freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

20xx-20xx備戰(zhàn)中考數(shù)學備考之平行四邊形壓軸突破訓練∶培優(yōu)易錯試卷篇附答案(參考版)

2025-03-30 22:26本頁面
  

【正文】 .點P從點A出發(fā),沿AB方向以每秒1個單位長度的速度向終點B運動(不與點A、B重合),過點P作PQ⊥AB.交折線ACCB于點Q,以PQ為邊向右作正方形PQMN,設點P的運動時間為t(秒),正方形PQMN與△ABC重疊部分圖形的面積為S(平方單位).(1)直接寫出正方形PQMN的邊PQ的長(用含t的代數(shù)式表示).(2)當點M落在邊BC上時,求t的值.(3)求S與t之間的函數(shù)關系式.(4)如圖②,點P運動的同時,點H從點B出發(fā),沿BAB的方向做一次往返運動,在BA上的速度為每秒2個單位長度,在AB上的速度為每秒4個單位長度,當點H停止運動時,點P也隨之停止,連結MH.設MH將正方形PQMN分成的兩部分圖形面積分別為SS2(平方單位)(0<S1<S2),直接寫出當S2≥3S1時t的取值范圍.【答案】(1) PQ=7t.(2) t=.(3) 當0<t≤時,S=.當<t≤4,.當4<t<7時,.(4)或或.【解析】試題分析:(1)分兩種情況討論:當點Q在線段AC上時,當點Q在線段BC上時.(2)根據(jù)AP+PN+NB=AB,列出關于t的方程即可解答;(3)當0<t≤時,當<t≤4,當4<t<7時;(4)或或.試題解析:(1)當點Q在線段AC上時,PQ=tanAAP=t.當點Q在線段BC上時,PQ=7t.(2)當點M落在邊BC上時,如圖③,由題意得:t+t+t=7,解得:t=.∴當點M落在邊BC上時,求t的值為.(3)當0<t≤時,如圖④,S=.當<t≤4,如圖⑤,.當4<t<7時,如圖⑥,.(4)或或..考點:四邊形綜合題.?!唷螦BP=176。+∠PBR=90176。=176。﹣90176?!郈P=CE,∴∠CPE=∠CEP=176。與∠PEC>90176。.若△PEC為等腰三角形,則EP=EC.∴∠EPC=∠ECP=45176。.∵∠PBC<90176?!郆C=OB.∵BC=1,∴OB=,∴PF=.∴點PP在運動過程中,PF的長度不變,值為.(2)當點E落在線段DC的延長線上時,符合要求的圖形如圖3所示.同理可得:PB=PE,PF=.(3)①若點E在線段DC上,如圖1.∵∠BPE=∠BCE=90176。﹣∠BPO=∠EPF.∵EF⊥PC即∠PFE=90176。.∵PE⊥PB即∠BPE=90176。∴∠BPG=90176。.∴PG=PH,∠GPH=∠PGB=∠PHE=90176。.在Rt△ABE中,AE2+AB2=BE2,即(8﹣BE)2+62=BE2,解得:BE==DE=BF,AE=8﹣DE=8﹣==BM,∴FM=﹣=.在Rt△EMF中,由勾股定理得:EF==.故答案為:.【點睛】本題考查了折疊的性質和矩形性質、勾股定理等知識點,能熟記折疊的性質是解答此題的關鍵.11.如圖,拋物線y=mx2+2mx+n經(jīng)過A(﹣3,0),C(0,﹣)兩點,與x軸交于另一點B.(1)求經(jīng)過A,B,C三點的拋物線的解析式;(2)過點C作CE∥x軸交拋物線于點E,寫出點E的坐標,并求AC、BE的交點F的坐標(3)若拋物線的頂點為D,連結DC、DE,四邊形CDEF是否為菱形?若是,請證明;若不是,請說明理由.【答案】(1)y=x2+x﹣;(2)F點坐標為(﹣1,﹣1);(3)四邊形CDEF是菱形.證明見解析【解析】【分析】將A、C點的坐標代入拋物線的解析式中,通過聯(lián)立方程組求得該拋物線的解析式;根據(jù)(1)題所得的拋物線的解析式,可確定拋物線的對稱軸方程以及B、C點的坐標,由CE∥x軸,可知C、E關于對稱軸對稱。cos30176?!唷螦MN=30176?!螱BN=30176?!螰BG=∠FGB=∠ABG=45176。即可解決問題.試題解析:(1)結論:AG2=GE2+GF2.理由:連接CG.∵四邊形ABCD是正方形,∴A、C關于對角線BD對稱,∵點G在BD上,∴GA=GC,∵GE⊥DC于點E,GF⊥BC于點F,∴∠GEC=∠ECF=∠CFG=90176。求線段BG的長.【答案】(1)AG2=GE2+GF2(2)【解析】試題分析:(1)結論:AG2=GE2+GF2.只要證明GA=GC,四邊形EGFC是矩形,推出GE=CF,在Rt△GFC中,利用勾股定理即可證明;(2)作BN⊥AG于N,在BN上截取一點M,使得AM=BM.設AN=x.易證AM=BM=2x,MN=x,在Rt△ABN中,根據(jù)AB2=AN2+BN2,可得1=x2+(2x+x)2,解得x=,推出BN=,再根據(jù)BG=BN247。由勾股定理得:AC=,∴△ABC的面積是BCAC=22=2;②如圖2,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折疊A和A′重合,∴AD=A′D=AB=4=2,∵△A′CD與△ABC重合部分的面積等于△ABC面積的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴DO=OA′,BO=CO,∴四邊形A′BDC是平行四邊形,∴A′C=BD=2,過C作CQ⊥A′D于Q,∵A′C=2,∠DA′C=∠BAC=30176。根據(jù)三角形面積公式求出即可;②求出高CQ,求出△A′DC的面積.即可求出△ABC的面積.試題解析:(1)∵四邊形ABCD是矩形,∴AD∥BC,∵AE=BF,∴四邊形ABFE是平行四邊形,∴OE=OB,∴△AOE和△AOB是友好三角形.(2)∵△AOE和△DOE是友好三角形,∴S△AOE=S△DOE,AE=ED=AD=3,∵△AOB與△AOE是友好三角形,∴S△AOB=S△AOE,∵△AOE≌△FOB,∴S△AOE=S△FOB,∴S△AOD=S△ABF,∴S四邊形CDOF=S矩形ABCD2S△ABF=46243=12.探究:解:分為兩種情況:①如圖1,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折疊A和A′重合,∴AD=A′D=AB=4=2,∵△A′CD與△ABC重合部分的面積等于△ABC面積的,∴S△DOC=S△ABC=S△BDC=S△ADC=
點擊復制文檔內容
環(huán)評公示相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1