freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx備戰(zhàn)中考數(shù)學備考之平行四邊形壓軸突破訓練∶培優(yōu)易錯試卷篇含答案解析(參考版)

2025-03-30 22:26本頁面
  

【正文】 AC=4,BC=3,所以AB=5.所以CD=.所以PQ=.在Rt△ACD中AC=4,CD=,所以AD=.因為AE=nPA,所以PE==CQ=PD=ADAP=.所以AP=.所以=.問題2:(1)如圖2,設(shè)對角線與相交于點.所以G是DC的中點,作QHBC,交BC的延長線于H,因為AD//BC,所以.所以.又,所以Rt≌Rt.所以AD=HC,QH=AP.由圖知,當 AB時,的長最小,即=CH=4.易得四邊形BPQH為矩形,所以QH=BP=AP.所以.(若學生有能力從梯形中位線角度考慮,若正確即可評分.但講評時不作要求)(2)PQ的最小值為..考點:1.直角三角形的性質(zhì);2.全等三角形的判定與性質(zhì);3.平行四邊形的性質(zhì);4矩形的判定與性質(zhì).。AC=4,BC=3,P為AC邊上的一動點,以PB,PA為邊構(gòu)造□APBQ,求對角線PQ的最小值及PQ最小時的值.(1)在解決這個問題時,小明構(gòu)造出了如圖2的輔助線,則PQ的最小值為 ,當PQ最小時= _____ __;(2)小明對問題1做了簡單的變式思考.如圖3,P為AB邊上的一動點,延長PA到點E,使AE=nPA(n為大于0的常數(shù)).以PE,PC為邊作□PCQE,試求對角線PQ長的最小值,并求PQ最小時的值;問題2:在四邊形ABCD中,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3.(1)如圖4,若為上任意一點,以,為邊作□.試求對角線長的最小值和PQ最小時的值.(2)若為上任意一點,延長到,使,再以,為邊作□.請直接寫出對角線長的最小值和PQ最小時的值.【答案】問題1:(1)3,;(2)PQ=,=.問題2:(1)=4,.(2)PQ的最小值為..【解析】試題分析:問題1:(1)首先根據(jù)條件可證四邊形PCBQ是矩形,然后根據(jù)條件“四邊形APBQ是平行四邊形可得AP=QB=PC,從而可求的值.(2)由題可知:當QP⊥AC時,PQ最小.過點C作CD⊥AB于點D.此時四邊形CDPQ為矩形,PQ=CD,在Rt△ABC中,∠C=90176。圓心角的扇形面積減去以AB為半徑90176。∴∠ABD=∠CAB=90176。時,得到△BDE,∴∠ABD=90176。∵∠OBA+∠BAO=90176。∴BC=;(2)①如圖1,∵B(0,3),∴OB=3,∵AB=5,∴AO=ABBO=53=2,∴A(0,2).當在x軸上方時,點A的坐標為(0,8),②如圖2,過點C作CF⊥OA與點F,∵△ABC為等腰直角三角形,∴∠BAC=90176。圓心角的扇形面積減去以AB為半徑90176。如圖1所示.(1)填空:AB= ,BC= .(2)將△ABC繞點B逆時針旋轉(zhuǎn),①當AC與x軸平行時,則點A的坐標是②當旋轉(zhuǎn)角為90176?!螿OF=∠KOB,∴∠KBO=∠OFQ.∵∠A=∠EKF=90176?!唷螷BO+∠KOB=90176。AB∥CD.∴∠GAM=∠PDM.在△GAM和△PDM中,∠GAM=∠PDM,AM=DM,∠AMG=∠DMP,∴△GAM≌△PDM(ASA).∴MG=MP.在△EMP和△EMG中,PM=GM,∠PME=∠GME,ME=ME,∴△EMP≌△EMG(SAS).∴EG=EP.∴AG+AE=EP.∴PD+AE=EP,即EP=AE+DP.(3),值不變,理由如下:如圖1,連接BM交EF于點Q,過點F作FK⊥AB于點K,交BM于點O,∵EM=EB,∠MEF=∠BEF,∴EF⊥MB,即∠FQO=90176?!唷螦DE=∠NDF.在△ADE和△NDF中,∠A=∠N,AD=ND,∠ADE=∠NDF,∴△ADE≌△NDF(ASA).∴AE=NF,DE=DF.∵FN=FC,∴AE=FC.∵AB=CD,∴ABAE=CDCF. ∴BE=DF. ∴BE=DE.Rt△AED中,由勾股定理,得,即,∴AE=AD.∴BE=2ADAD=.∴.(2)如圖3,延長PM交EA延長線于G,∴∠GAM=90176。.∵AB=mAD,且n=2,∴AB=2AD.∵∠ADE+∠EDF=90176。時,四邊形FOBE是菱形.【答案】(1)見解析;(2)30.【解析】【分析】(1)由等角的轉(zhuǎn)換證明出,根據(jù)圓的位置關(guān)系證得AC是⊙O的切線.(2)根據(jù)四邊形FOBE是菱形,得到OF=OB=BF=EF,得證為等邊三角形,而得出,根據(jù)三角形內(nèi)角和即可求出答案.【詳解】(1)證明:∵CD與⊙O相切于點E,∴,∴,又∵,∴,∠OBE=∠COA∵OE=OB,∴,∴,又∵OC=OC,OA=OE,∴,∴,又∵AB為⊙O的直徑,∴AC為⊙O的切線;(2)解:∵四邊形FOBE是菱形,∴OF=OB=BF=EF,∴OE=OB=BE,∴為等邊三角形,∴,而,∴.故答案為30.【點睛】本題主要考查與圓有關(guān)的位置關(guān)系和圓中的計算問題,熟練掌握圓的性質(zhì)是本題的解題關(guān)鍵.13.如圖1,在長方形紙片ABCD中,AB=mAD,其中m?1,將它沿EF折疊(點E.∴∠BAC﹣∠MAC=∠MAN﹣∠MAC即∠BAM=∠CAN,∵,∴,∴△ABM~△ACN∴,∴=cos45176。﹣∠AMN),∵∠ABC=∠AMN,∴∠BAC=∠MAN,∴∠BAM=∠CAN,∴△ABM~△ACN,∴∠ABC=∠ACN;(3)如圖3,連接AB,AN,∵四邊形ADBC,AMEF為正方形,∴∠ABC=∠BAC=45176?!郈N∥AB; (2)∠ABC=∠ACN,理由如下:∵=1且∠ABC=∠AMN,∴△ABC~△AMN∴,∵AB=BC,∴∠BAC=(180176?!唷螦NC+∠MAN+∠BAM=∠ANC+60176?!摺螦NC+∠ACN+∠CAN=∠ANC+60176。根據(jù)相似三角形的性質(zhì)得出,得到BM=2,CM=8,再根據(jù)勾股定理即可得到答案.詳解:(1)NC∥AB,理由如下:∵△ABC與△MN是等邊三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60176。從而得到∠BAC∠CAM=∠MAN∠CAM,即∠BAM=∠CAN,證明△BAM≌△CAN,即可得到BM=CN.(2)根據(jù)△ABC,△AMN為等腰三角形,得到AB:BC=1:1且∠ABC=∠AMN,根據(jù)相似三角形的性質(zhì)得到,利用等腰三角形的性質(zhì)得到∠BAC=∠MAN,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論;(3)如圖3,連接AB,AN,根據(jù)正方形的性質(zhì)得到∠ABC=∠BAC=45176。至△ADG,可使AB與AD重合,證出△AFE≌△AFG,根據(jù)全等三角形的性質(zhì)得出EF=FG,即可得出答案;(3)把△ACE旋轉(zhuǎn)到ABF的位置,連接DF,證明△AFE≌△AFG(SAS),則EF=FG,∠C=∠ABF=45176?!敬鸢浮浚?)詳見解析;(2)詳見解析;(3)詳見解析.【解析】試題分析:(1)把△ABE繞點A逆時針旋轉(zhuǎn)90176。,AB=AC,點D、E均在邊BC上,且∠DAE=45176。F分別在邊BC、CD上,∠EAF=45176。連接EF、則EF=BE+DF,試說明理由;(2)類比引申如圖2,在四邊形ABCD中,AB=AD,∠BAD=90176?!郃E和EC在同一條直線上,在RT△ADF中,AM=MF,∴DM=AM=MF,在RT△AEF中,AM=MF,∴AM=MF=ME,∴DM=ME.考點:(1)、三角形全等的性質(zhì);(2)、矩形的性質(zhì).10.(1)問題發(fā)現(xiàn)如圖1,點E.根據(jù)RT△ADF中AM=MF得出DM=AM=MF,根據(jù)RT△AEF中AM=MF得出AM=MF=ME,從而說明DM=ME.試題解析:如圖1,延長EM交AD于點H,∵四邊形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,F(xiàn)M=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=DE,∴DM=HM=ME,∴DM=ME.(1)、如圖1,延長EM交AD于點H,∵四邊形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,F(xiàn)M=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=EM∴DM=HM=ME,∴DM=ME,(2)、如圖2,連接AE,∵四邊形ABCD和ECGF是正方形,∴∠FCE=45176。P2=22+(222t)2,∴82+(2t4)2=22+(222t)2,解得:t=;綜上所述,t為或5或時,折疊后頂點A的對應(yīng)點A′落在矩形的一邊上.【點睛】四邊形綜合題目,考查了矩形的性質(zhì)、折疊變換的性質(zhì)、勾股定理、函數(shù)圖象、直線與圓的位置關(guān)系、三角形中位線定理、等腰三角形的判定、以及分類討論等知識.9.猜想與證明:如圖1
點擊復(fù)制文檔內(nèi)容
試題試卷相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1