【正文】
2021 年中, AngloGold 公司 (現(xiàn) AngloGoldAshanti) 已。在美國,地震學(xué)被認(rèn)為是地理學(xué)科的一部分。礦山地震學(xué)家有廣泛的定義:不考慮背景和正規(guī)培訓(xùn),任何能夠?qū)X?zé)管理地震系統(tǒng)和 /或分析和評價來自采礦作業(yè)的地震數(shù)據(jù)的人。筆者這里介紹訓(xùn)練課程和與那些略述的關(guān)于南非的礦業(yè)工程顧問和一些礦井的內(nèi)容。從事實來看,一個深層次的影響會產(chǎn)生。 interpretation Risk Reduction 18 Fig. 2 The OSCAR cycle: The major elements of applied mine seismology. The answer to question three is usually dictated by the needs of the larger mining operation: Degree of urgency, legal requirements and budgetary constraints may play a role. The formulation of objectives under consideration of financial and other constraints is then followed by seismic system design and installation. Seismic system A seismic system consists of a bination of work hardware and software that allows the collection of seismic data, data processing for basic event parameters, and the creation of data bases from his data. The design of a suitable system is there for edirectly linked to the aims of monitoring: Requirements such as spatial coverage, spatial/temporal resolution, choice of suitable sensors, and the quantification of various aspects of seismicity must enable the generation of seismic information to meet these objectives. Selection of the system will naturally involve system suppliers, but an understanding of the following topic sensures an independent and informed decision by the advising rock engineer: * Physics of oscillation * Wave types * Wave propagation * Interfaces * Network types * Sensor types* Methods of data transfer * Network performance criteria * Product costs * Limitations of methods Particular the last item, which refers to limitations of methods to record ground motion, invert for seismic source parameters (location in time and space, seismic energy release, seismic moment, local magnitude etc.) and subsequently assign a physical interpretation to these parameters, needs to be understood by everyone involved in system selection. Calculation of source parameters and event locations is generally based on idea lised conditions that are never truly met in nature (homogenous, elastic and isotropic medium). The consequence for system design is that each system configuration, in bination with system settings, results in a specific capability to record, process and store data. Design and configuration must therefore be adapted to local requirements as formulated in the monitoring objectives. Data collection Successful system installation is followed by data gathering, which prises recording, automatic and manual processing to derive source quantification, and storage. This is a specialised field that requires input from technicians, IT system administrators and system operators under guidance of a mine seismologist. A rock engineer typically requires little knowledge of the operation of such works other than that of key indicators which would enable her to perform a review function: * 19 System down time * Station down time * Ratio accepted/rejected events * Average repair time of units * Location accuracy * Sensitivity These variables allow an effective parison of the actual system performance with preset targets that need to be monitored over time. Knowledge of methods to determine location accuracy and work sensitivity is required. At times, rock engineers may be facilitating the munication and interaction between the seismic work operator and the mine’s engineering function. For instance, on local mines only mine employed electricians are authorised to work on the electrical infrastructure to ensure uninterrupted power supply to seismic stations. 20 附錄 2 中文譯文 礦業(yè)工程師必備的能力框架 礦山地震學(xué) 南非共和國 礦業(yè)顧問公司有限公司 摘要 : 近十年來,獻(xiàn)身于沙特礦業(yè)的礦業(yè)地震學(xué)家數(shù)量減少了。 Kijko (1994) discuss theoretical concepts of seismic failure mechanisms, source quantification and elastic wave propagation, on a level that exceeds the requirements for nonseismologists. 16 Seismic data interpretation process (adapted from Oakland, 2021): Inputs (left) and out puts (right)。 optimal face layout and mining sequence, production rate and face configuration to minimise seismic energy emission。通過這段時間的設(shè)計,使我能更加熟練的運(yùn)用機(jī)械設(shè)計方面的有關(guān)知識,更好的運(yùn)用 Auto CAD 軟件,以及查表和閱覽專業(yè)工具書籍的能力。在設(shè)計結(jié)尾對選出的 提升機(jī)進(jìn)行了運(yùn)動學(xué)和動力學(xué)校驗,保證了所選的提升機(jī)能夠穩(wěn)定、安全的運(yùn)行。 1W 及提升設(shè)備的年電耗電 nW 8 1 *1000= kW h / tWWQ??? 式( ) * nsW W AkW??? 式( ) yW 336005940 *10 * 4803600 10 kW htyQgHW ??? ? ? 式( ) ? y 7 .9 2 4 2 .5 8 %1 8 .6WW? ? ? ? 式( ) 9 結(jié)論 煤礦礦井提升的選型設(shè)計是對將要開采的煤礦進(jìn)行一次提升系統(tǒng)的各個零部件的選擇設(shè)計,在現(xiàn)實生活在有很大的意義。iF —— 提升系統(tǒng)各終止階段拖 動力( 0 1 2 3 5i? 、 、 、 、 ); 經(jīng)計算有 : 2 2 2 220222 2 2 292116177 116062 149162 143550 * 3 149215 1022427 10 NXT F dts??? ? ? ? ???????? ? ? ?? ? ?式( ) 提升機(jī)等效力為: 2 90 4 2 7 1 0 8 9 . 0 9 8 k N5 3 . 9XTd dF d tF T? ?? ? ? 式( ) 電動機(jī)容量為 201000 * 81 .8 2310 00 * 0. 85 15 59 .4 5xTmdjdF dtvPTkW????? 式( ) 電動機(jī)容量的驗算 1) 按電動機(jī)允許發(fā)熱條件 / 1dPP?? 式( ) 7 即有 %的備份容量。 電動 機(jī)拖動力矩 M 和電動機(jī)定子的電流有一定的關(guān)系,當(dāng)電動機(jī)接入電網(wǎng)電壓不變時,在單位時間內(nèi)電動機(jī)線圈內(nèi)產(chǎn)生的熱量為: dq kMdt? 式( ) 式中 M —— 電動機(jī)軸上的變化力矩。 5 7 提升系統(tǒng)相關(guān)參數(shù)校核及驗算 提升電動機(jī)容量校核 提升電動機(jī)的工作狀態(tài)屬于重復(fù)短時工作制,提升電動機(jī)工作軸上的功率不僅每個提升循環(huán)有變化,而且在每個循環(huán)工作系統(tǒng)中也是變化的。它主要部件 有 單繩纏繞式 提升機(jī) 、鋼絲繩、提升容器、天輪等 。該系統(tǒng)核心部分為單繩纏繞式提升機(jī)。 事物在不斷的發(fā)展,礦井提升設(shè)備也在不斷 的發(fā)展,其類型、結(jié)構(gòu)等都在日新月異地向前發(fā)展。這種提升設(shè)備特別適合于較深礦井中。尤其是近幾十