【總結】第一章勾股定理回顧與思考1、直角三角形的邊、角之間分別存在什么關系?⑴角與角之間的關系:在△ABC中,∠C=90o,有∠A+∠B=90o⑵邊與邊之間的關系:在△ABC中,∠C=90o,有222baC??議一議:2、舉例
2025-11-21 08:34
【總結】北師大八年級上冊第一章第一節(jié)123相傳兩千多年前,一次畢達哥拉斯去朋友家作客,發(fā)現(xiàn)朋友家用磚鋪成的地面反映直角三角形三邊的某種數(shù)量關系,同學
2025-11-21 08:16
【總結】勾股定理1、知識不技能掌握勾股定理反映的數(shù)量關系;會用拼圖法、面積法證明勾股定理;在生活實踐中學會使用勾股定理。2、過程不方法通過“觀察—猜想—歸納—驗證”過程理解勾股定理;學會從特殊到一般的數(shù)學思考方法。3、情感態(tài)度、價值觀通過實驗、猜想、拼圖、證明等了解數(shù)學知識的發(fā)生發(fā)
2025-06-12 01:40
【總結】勾股定理:直角三角形兩條直角邊的平方和等于斜邊的平方。acbBCA如圖:a2+b2=c2或BC2+AC2=AB2(1)a=5,b=12,則c=___(2)b=7,c=9,則a=_____.若一個直角三角形的兩條邊長分別是3㎝和4㎝,求這個直角三角形的周長??古埃及人曾用下面的方法得到直角:
2025-11-21 02:46
【總結】分式(一)冀教版八年級(上)三維目標?知識與技能:了解分式的概念,掌握分式的基本性質(zhì).?過程與方法:用類比的方法探索分式及分式的基本性質(zhì),由除法運算探索分式有意義,無意義,值為零.?情感態(tài)度與價值觀:經(jīng)歷本節(jié)知識的學習,使學生體會學習的樂趣,增強學生學好數(shù)學的自信心,學會合作,學會交流,深刻體會類比的數(shù)學思想在解決數(shù)學問題
2025-11-29 11:08
【總結】在RtABC中,兩條直角邊AC=BC=果將RtABC沿斜邊AB上的高CD剪開后,拼成右圖的所示的正方形,那么這個正方形的邊長是多少?2m2CABD22m?m是多少?它是一個無限不循環(huán)小數(shù)m=…m???6457513????259912?
2025-11-29 06:21
【總結】直角三角形的判定一、教學目標知識與技能:掌握直角三角形的判定條件,并能進行簡單應用.過程與方法:通過“創(chuàng)設情境---實驗驗證----理論釋意---實際應用---探究活動”的探索過程,讓學生感受知識的樂趣情感態(tài)度與價值觀:激發(fā)學生解決的愿望,體會逆向思維所獲得的結論.明確其應用范圍和實際價值.二、重點、難
2025-11-23 23:31
【總結】2.7勾股定理的應用2.7勾股定理的應用(1)教學目標:1.能運用勾股定理及直角三角形的判定條件解決實際問題.2.在運用勾股定理解決實際問題的過程中,感受數(shù)學的“轉化”思想(把解斜三角形問題轉化為解直角三角形的問題),進一步發(fā)展有條理思考和有條理表達的能力,體會數(shù)學的應用價值.教學過程:1.情境創(chuàng)設
2025-11-10 21:13
【總結】一、選擇題1.若線段a,b,c組成Rt△,則它們的比可以是()A、2∶3∶4B、3∶4∶6C、5∶12∶13D、4∶6∶72.Rt△一直角邊的長為11,另兩邊為自然數(shù),則Rt△的周長為()A、121B、120C、132D、不能確定3.如果Rt△的兩直角邊長分別為
2025-11-26 08:56
【總結】課題§(1)課型新授教學目1、能說出勾股定理,了解利用拼圖驗證勾股定理的方法2、經(jīng)歷探索勾股定理的過程,發(fā)展合情推理的能力,體會數(shù)形結合思想教學重點體驗勾股定理的探索過程教學難點勾股定理在生活實際中的應用教具準備教學過程教學內(nèi)容教師活動內(nèi)容、方式學生活動
2025-11-29 02:28
【總結】義務教育課程標準實驗教科書八年級上冊定義與命題?要說明一個命題是假命題,通??梢耘e出一個例子,使之具備命題的條件,而不具備命題的結論,這種例子稱為反例.正確的命題稱為真命題,不正確的的命題稱為假命題.怎樣證明真命題呢?是的,非常正確三角形兩邊之和為什么大于第三邊?
2025-11-29 09:52
【總結】勾股定理一、選擇題:(5×5),不能作為直角三角形三邊長的是()A.9,12,15B.7,24,25C.6,8,10D.3,5,7,得到的三角形()A.可能是銳角三角形B.不可能是直角三角形C.仍然是
2025-11-06 17:53
【總結】(2)【教學目標】:知識與技能目標:準確運用勾股定理及逆定理.過程與分析目標:經(jīng)歷勾股定理的應用過程,熟練掌握其應用方法,應用“數(shù)形結合”的思想來解決.情感與態(tài)度目標:培養(yǎng)合情推理能力,提高合作交流意識,體會勾股定理的應用【教學重點】:掌握勾股定理及其逆定理【教學難點】:正確運用勾股定理及其逆定理.
2025-11-30 07:55
【總結】一、課內(nèi)訓練:1.在△ABC中,∠A=90°,則下列各式中不成立的是()A.BC2=AB2+AC2;B.AB2=AC2+BC2;C.AB2=BC2-AC2;D.AC2=BC2-AB22.填空(1)一個直角三角形的三邊從小到大依次為x,16,20,則x=_______;
【總結】勾股定理教學目標◆1、體驗勾股定理的探索過程.◆2、掌握勾股定理.◆3、學會用勾股定理解決簡單的幾何問題.教學重點與難點◆教學重點:本節(jié)的重點是勾股定理.◆教學難點:勾股定理的證明采用了面積法,這是學生從未體驗的,是本節(jié)教學的難點.教學過程(一)、創(chuàng)設情境,導入新課向學生展示國
2025-11-30 08:37