【總結(jié)】1北師大版高中數(shù)學(xué)選修2-1第二章空間向量與立體幾何法門高中姚連省制作2平面向量的加法、減法與數(shù)乘運算向量加法的三角形法則ab向量加法的平行四邊形法則ba向量減法的三角形法則aba(k0)ka(k0)k向量的數(shù)乘a3推廣:
2025-11-09 00:48
【總結(jié)】高中蘇教選修(2-1)空間向量的應(yīng)用測試題一、選擇題1.已知向量(235)??,,a與向量1532????????,,b平行,則??()A.23B.92C.92?D.23?答案:C2.已知ABC,,三點的坐標(biāo)分別為(413)(25
2025-11-26 09:20
【總結(jié)】【課堂新坐標(biāo)】(教師用書)2021-2021學(xué)年高中數(shù)學(xué)空間向量的數(shù)量積課后知能檢測蘇教版選修2-1一、填空題1.下列結(jié)論中正確的序號是________.①a·b=a·c(a≠0)?b=c;②a·b=0?a=0或b=0;③(a·b)·c=a
2025-11-25 20:01
【總結(jié)】§3.空間向量的正交分解及其坐標(biāo)表示知識點一向量基底的判斷已知向量{a,b,c}是空間的一個基底,那么向量a+b,a-b,c能構(gòu)成空間的一個基底嗎?為什么?解∵a+b,a-b,c不共面,能構(gòu)成空間一個基底.假設(shè)a+b,a-b,c共面,則存在x,
2025-11-29 01:49
【總結(jié)】直線的方向向量與平面的法向量一、學(xué)習(xí)目標(biāo)1.理解直線的方向向量和平面的法向量;2.會用待定系數(shù)法求平面的法向量。教學(xué)重點:直線的方向向量和平面的法向量教學(xué)難點:求平面的法向量二、課前自學(xué)平面坐標(biāo)系中用直線的傾斜角、斜率來刻畫直線平行與垂直的位置關(guān)系。如何用向量來描述空間的兩條直線、直線
2025-11-11 00:29
【總結(jié)】第3章——空間向量的數(shù)量積[學(xué)習(xí)目標(biāo)],掌握兩個向量的數(shù)量積的概念、性質(zhì)和計算方法及運算規(guī)律.,會用它解決立體幾何中一些簡單的問題.1預(yù)習(xí)導(dǎo)學(xué)挑戓自我,點點落實2課堂講義重點難點,個個擊破3當(dāng)堂檢測當(dāng)堂訓(xùn)練,體驗成功[知識鏈接
2025-11-09 08:08
【總結(jié)】第3章——空間向量及其運算空間向量及其線性運算[學(xué)習(xí)目標(biāo)],幾何表示法、字母表示法...1預(yù)習(xí)導(dǎo)學(xué)挑戓自我,點點落實2課堂講義重點難點,個個擊破3當(dāng)堂檢測當(dāng)堂訓(xùn)練,體驗成功[知識鏈接]觀察正方體中過同一個頂點的
【總結(jié)】第3章——空間向量的應(yīng)用直線的方向向量與平面的法向量[學(xué)習(xí)目標(biāo)]..1預(yù)習(xí)導(dǎo)學(xué)挑戰(zhàn)自我,點點落實2課堂講義重點難點,個個擊破3當(dāng)堂檢測當(dāng)堂訓(xùn)練,體驗成功[知識鏈接],它們乊間有何關(guān)系?答:相互平行.?
【總結(jié)】第3章——空間線面關(guān)系的判定[學(xué)習(xí)目標(biāo)]、線面、面面的垂直和平行關(guān)系.、面位置關(guān)系的一些定理(包括三垂線定理)..1預(yù)習(xí)導(dǎo)學(xué)挑戓自我,點點落實2課堂講義重點難點,個個擊破3當(dāng)堂檢測當(dāng)堂訓(xùn)練,體驗成功[知識鏈接]
2025-11-08 19:02
【總結(jié)】第二章§2理解教材新知把握熱點考向應(yīng)用創(chuàng)新演練知識點一知識點二考點一考點二考點三知識點三在射擊時,為保證準(zhǔn)確命中目標(biāo),要考慮風(fēng)速、溫度等因素.其中風(fēng)速對射擊的精準(zhǔn)度影響最大.如某人向正北100m遠處的目標(biāo)射擊,風(fēng)速為西風(fēng)1m/s.
【總結(jié)】解及其坐標(biāo)表示lαOP例1在平面內(nèi)的一條直線,如果和這個平面的一條斜線的射影垂直,那么它也和這條斜線垂直。已知:如圖,PO,PA分別是平面α的垂線,斜線,AO是PA在平面α內(nèi)的射影,.:,,PAlOAll???求證且?AlαOP.,,OAPOal
2025-11-09 12:14
【總結(jié)】課題:空間向量的運算(二)學(xué)習(xí)目標(biāo):知識與技能:1、熟練掌握空間向量的數(shù)量積運算.2、能用空間向量的運算律解決簡單的立體幾何中的問題過程與方法:經(jīng)歷向量運算平面到空間推廣的過程,進一步掌握類比的數(shù)學(xué)思想方法.情感態(tài)度與價值觀:學(xué)會用發(fā)展的眼光看問題,認識事物是在不斷發(fā)展變化的,會用聯(lián)系的觀點看待問題。
2025-11-09 18:59
【總結(jié)】課題空間向量的運算(一)學(xué)習(xí)目標(biāo):知識與技能:1、熟練掌握空間向量的加法、減法、數(shù)乘及其數(shù)量積運算.2、能用空間向量的運算律解決簡單的立體幾何中的問題.過程與方法:經(jīng)歷向量運算平面到空間推廣的過程,進一步掌握類比的數(shù)學(xué)思想方法.情感態(tài)度與價值觀:學(xué)會用發(fā)展的眼光看問題,認識事物是在不斷發(fā)展變化的,會用聯(lián)系的觀點看
2025-11-24 00:16
【總結(jié)】課題.3空間向量運算的坐標(biāo)表示學(xué)習(xí)目標(biāo):知識與技能掌握空間向量加法、減法、數(shù)乘、數(shù)量積運算的坐標(biāo)表示以及向量的長度、夾角公式的坐標(biāo)表示,并能初步應(yīng)用這些知識解決簡單的立體幾何問題.過程與方法①通過將空間向量運算與熟悉的平面向量的運算進行類比,使學(xué)生掌握空間向量運算的坐標(biāo)表示,滲透類比的數(shù)學(xué)方法;
【總結(jié)】空間向量運算的坐標(biāo)表示【學(xué)習(xí)目標(biāo)】⒈掌握空間向量坐標(biāo)運算的規(guī)律;,判斷兩個向量共線或垂直;【自主學(xué)習(xí)】若123(,,)aaaa?,123(,,)bbbb?,則_________??ab,_____________??ab,_____________()??
2025-11-10 23:24