【總結】1、均值不等式:課前熱身:2、均值不等式的變形:2(,)abababR????(,)2abababR????2()(,)2abababR????222abab??3、重要不等式的變形:)0(32)(2?????xxxxxf
2025-03-13 05:16
【總結】12不等式的定義:用不等號連接兩個解析式所得的式子,叫做不等式.說明:(1)不等號的種類:>、<、≥(≮)、≤(≯)、≠.(2)解析式是指:代數(shù)式和超越式(包括指數(shù)式、對數(shù)式和三角式等)(3)不等式研究的范圍是實數(shù)集R.3對于任意兩個實數(shù)a、b,在a>b,a=b,a
2024-11-18 12:09
【總結】不等關系與不等式雙基達標限時20分鐘1.下面表示“a與b的差是非負數(shù)”的不等關系的是().A.a(chǎn)-b0B.a(chǎn)-b0C.a(chǎn)-b≥0D.a(chǎn)-b≤0答案C2.某隧道入口豎立著“限高”的警示牌,是指示司機要安全通過隧道,應使車載貨物高度h滿足關系為().
2024-11-27 23:54
【總結】課題:基本不等式的證明(2)班級:姓名:學號:第學習小組【學習目標】運用基本不等式求解函數(shù)最值問題.【課前預習】1.當0??ab時,比較baabbaabbaab???????????????22222,,,,,的大?。ㄟ\用基本不等式及比較法)
2024-11-20 01:04
【總結】2020年高中數(shù)學冪函數(shù)學案新人教B版必修1一、三維目標:1.理解冪函數(shù)的概念,會畫函數(shù)xy?,2xy?,3xy?,1??xy,21xy?的圖象.2.了解冪函數(shù)的圖象,理解冪函數(shù)圖象的變化情況和性質,并能進行簡單的應用.3.滲透辨證唯物主義觀點和方法論,培養(yǎng)學生運用具體問題具體分析的方法分析問題、
2024-11-19 23:24
【總結】§二元一次不等式(組)與簡單的線性規(guī)劃問題3.二元一次不等式(組)所表示的平面區(qū)域自主學習知識梳理1.二元一次不等式(組)的概念(1)含有________未知數(shù),并且未知數(shù)的次數(shù)是____的不等式叫做二元一次不等式.由幾個二元一次不等式組成的不等式組叫做二元一次不等式組.(2)滿足二元一
2024-12-05 06:38
【總結】不等式的性質課件不等式的性質(1)世界上所有的事物不等是絕對的,相等是相對的。過去我們已經(jīng)接觸過許多不等式的問題,本章我們將較系統(tǒng)地研究有關不等式的性質、證明、解法和應用.1.判斷兩個實數(shù)大小的充要條件對于任意兩個實數(shù)a、b,在a>b,a=b,a<b三種關系中有且僅有一種成立.判斷兩個實數(shù)大小的充要條件是:
2024-11-17 11:59
【總結】如果a,b∈R,那么a2+b2≥2ab(當且僅當a=b時取“=”)證明:222)(2baabba??????????????0)(0)(22babababa時,當時,當abba222??1.定理適用范圍:Rba?,2.取“=”的條件:ba?定理:
2024-11-18 08:48
【總結】云南省曲靖市麒麟?yún)^(qū)第七中學高中數(shù)學平面學案新人教A版必修2【學習目標】了解平面的概念,掌握平面的畫法及表示法掌握平面的基本性質及它們的作用3、會用文字語言、圖形語言、符號語言表示點、線、面的位置關系【學習重點】學習重點:掌握平面的基本性質及它們的作用學習難點:掌握平面的基本性質及它們的作用【自主學習】閱
2024-12-05 01:53
【總結】一元二次不等式(2)教學目標:1.進一步鞏固一元二次方程、一元二次不等式與二次函數(shù)的關系;會解簡單的分式不等式,簡單的含參數(shù)的不等式;掌握簡單的含有參數(shù)的一元二次不等式恒成立問題;2.滲透數(shù)形結合,分類討論的數(shù)學思想.教學重點:初步掌握含有參數(shù)的一元二次不等式的求解和恒成立問題.教學難點:
【總結】均值不等式的推廣:2、222(,)1122ababababRab????????3(,,)3abcabcabcR?????1、三、典例分析:,,abc222abcabbcca?????例1、已知是不全相等的實數(shù),求證:22
【總結】,ab3abab???ab例1、若正數(shù)滿足,則的取值范圍是什么?解:32ababab????當且僅當ab?時,等號成立。32abab???2()230abab????3ab??或1ab??(舍)9ab??ab?的取值范圍是[9,)??,ab3ab
【總結】:2baab??復習引入基本不等式:.)0,0(2????baabba;222abba??講授新課.4,的最值,求是正數(shù)且abbaba??例1.講授新課.4,的最值,求是正數(shù)且abbaba??例1.變式1..42,的最值,求
2024-11-19 18:02
【總結】:2baab??引入新課提問1:我們把“風車”造型抽象成下圖.在正方形ABCD中有4個全等的直角三角形.設直角三角形的兩條直角邊的長為a、b,那么正方形的邊長為多少?面積為多少呢?ADCBGEFH引入新課提問1:我們把“風車”造型抽象成下圖.在
2024-11-19 18:20
【總結】不等式的性質雙基達標限時20分鐘1.已知a,b,c,d∈R且ab0,-ca-db,則().A.bcadbd0,∴在-ca-db兩側乘ab不變號,即-bc-ad,即bcad.答
2024-11-28 02:11