【總結(jié)】等比數(shù)列的前n項和教學(xué)過程導(dǎo)入新課師國際象棋起源于古代印度.相傳國王要獎賞國際象棋的發(fā)明者.這個故事大家聽說過嗎?生知道一些,踴躍發(fā)言師“請在第一個格子里放上1顆麥粒,第二個格子里放上2顆麥粒,第三個格子里放上4顆麥粒,以此類推.每一個格子里放的麥粒都是前一個格子里放的麥粒的2倍.直到第64個
2024-11-19 21:23
【總結(jié)】第一頁,編輯于星期六:點三十四分。,2.4等比數(shù)列第一課時等比數(shù)列的概念及通項公式,第二頁,編輯于星期六:點三十四分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁,編輯于星期六:點三十四分。,第四頁,編...
2024-10-22 18:53
【總結(jié)】等比數(shù)列的前n項和(第一課時)創(chuàng)設(shè)情境明總:在一個月中,我第一天給你一萬,以后每天比前一天多給你一萬元。林總:我第一天還你一分錢,以后每天還的錢是前一天的兩倍創(chuàng)設(shè)情境林總:哈哈!這么多錢!我可賺大了,我要是訂了兩個月,三個月那該多好??!果真如此嗎?創(chuàng)設(shè)情境請你們幫林總分析一下
2024-11-17 15:04
【總結(jié)】知識回顧1.等比數(shù)列的定義;2.等比數(shù)列的通項公式;3.等比數(shù)列的中項公式;4.等比數(shù)列的下標(biāo)公式。問題探究????。和項的前,請推導(dǎo)等比數(shù)列公比為,中,前項為:等比數(shù)列 探究nnnSnaqaa1)(其中 請你證明:,都不為,,且:如果 探究*nnnn
2024-11-18 08:10
【總結(jié)】等差數(shù)列與等比數(shù)列的類比等差數(shù)列等比數(shù)列定義首項、公差(公比)取值有無限制通項公式主要性質(zhì)1(2)nnaqna???11nnaaq??1(2)nnaadn????1(1)naand???(1)()nmaanmd???
2024-11-18 12:17
【總結(jié)】國際象棋起源于印度,關(guān)于國際象棋有這樣一個傳說,國王要獎勵國際象棋的發(fā)明者,問他有什么要求,發(fā)明者說:“請在棋盤上的第一個格子上放1粒麥子,第二個格子上放2粒麥子,第三個格子上放4粒麥子,第四個格子上放8粒麥子,依次類推,直到第64個格子放滿為止。”國王慷慨地答應(yīng)了他。你認(rèn)為國王有能力滿足上述要求嗎?左
2024-11-18 08:48
【總結(jié)】等差數(shù)列的公差:等差數(shù)列的通項公式:等差數(shù)列的定義:知識回顧:等差數(shù)列的通項公式是如何推導(dǎo)?觀察思考:以下幾個數(shù)列有何共同特點?(1)2,4,8,16,…(2)2,2,4,4…22(4)5,5,5,5,…(3)1,,,,…
【總結(jié)】知識回顧等比數(shù)列{an}的求和公式及推導(dǎo)方法。問題探究??也成等比數(shù)列。,,求證:,項和為的前:已知等比數(shù)列 探究142171471SSSSSSnann??等于多少?項的和,那么它前項的和等于,前項和等于:如果一個等比數(shù)列前 探究1550101052??證明。請間滿足怎樣的關(guān)系?并,,
【總結(jié)】2.等比數(shù)列的前n項和學(xué)習(xí)目標(biāo)預(yù)習(xí)導(dǎo)學(xué)典例精析欄目鏈接情景導(dǎo)入九章算術(shù)有一道“耗子穿墻”的問題:今有垣厚5尺,兩鼠相對,大鼠日一尺,小鼠亦一尺.大鼠日自倍,小鼠日自半,問幾何日相逢?各穿幾何?在實際上是一個等比數(shù)列求和的問題,他的解法也很
2024-11-17 23:16
【總結(jié)】等比數(shù)列(第1課時)學(xué)習(xí)目標(biāo),理解等比數(shù)列的概念.,明確一個數(shù)列是等比數(shù)列的限定條件;能夠運用類比的思想方法得到等比數(shù)列的定義,會推導(dǎo)等比數(shù)列的通項公式.合作學(xué)習(xí)一、設(shè)計問題,創(chuàng)設(shè)情境:定義:通項公式:an=a1+(n-1)d,(n∈N*).前n項和公式:Sn==na1+d,(n∈
2024-12-08 07:03
【總結(jié)】等比數(shù)列(第2課時)學(xué)習(xí)目標(biāo)靈活應(yīng)用等比數(shù)列的定義及通項公式;深刻理解等比中項的概念;熟悉等比數(shù)列的有關(guān)性質(zhì),并系統(tǒng)了解判斷數(shù)列是否是等比數(shù)列的方法.通過自主探究、合作交流獲得對等比數(shù)列性質(zhì)的認(rèn)識.充分感受數(shù)列是反映現(xiàn)實生活的模型,體會數(shù)學(xué)是來源于現(xiàn)實生活,并應(yīng)用于現(xiàn)實生活的,數(shù)學(xué)是豐富多彩的而不是枯燥無味的,提高學(xué)習(xí)的興趣.合
2024-12-09 03:42
【總結(jié)】等比數(shù)列的概念一.填空題(1).111,,369(2).lg3,lg9,lg27(3).6,8,10(4).3,33,9???na中,32a?,864a?,那么它的公比q???na是等比數(shù)列,na0,又知
2024-11-15 17:58
【總結(jié)】本資料由書利華教育網(wǎng)(又名數(shù)理化網(wǎng))為您整理1復(fù)習(xí)回顧:請同學(xué)們回憶一下等差數(shù)列的定義和什么是等差中項定義:一般地,如果一個數(shù)列從第二項起,每一項與它的前一項的差都等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做等比數(shù)列的公差。公差通常用字母d表示.由三個數(shù)a,A,b組成的等差數(shù)列,
2024-11-17 16:27
2024-11-17 16:26
【總結(jié)】聽課記錄2016年11月16日授課教師葉麗麗學(xué)科數(shù)學(xué)學(xué)校班級河田中學(xué)高三(20)課題等比數(shù)列及基本概念其相關(guān)性質(zhì)課型復(fù)習(xí)課1、導(dǎo)入(由教材例題直接引入,PPT展示)1.(必修5P55習(xí)題2(1)改編)設(shè)Sn是等比數(shù)列{an}的前n項和,若a1=1,a6=32,則S3=______
2025-04-04 05:15