【總結】第3講平面向量感悟高考明確考向(2010·天津)如圖,在△ABC中,AD⊥AB,???ADACAD則,1||,3BDBC?.解析設BD=a,則BC=3a,作CE⊥BA交BA的延長線于E,可知∠DAC=∠ACE,在Rt
2024-11-12 19:04
【總結】《平面向量的數(shù)量積》教學設計及反思交口第一中學趙云鵬平面向量的數(shù)量積是繼向量的線性運算之后的又一重要運算,也是高中數(shù)學的一個重要概念,它是溝通代數(shù)、幾何與三角函數(shù)的一種重要工具,在每年高考中也是重
2025-04-17 01:00
【總結】…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………學校:___________姓名:________班級:________考號:________…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………絕密★啟用前2018年01月19日214****9063的高中數(shù)學組卷試卷副標題
2025-03-25 01:22
【總結】§平面向量的數(shù)量積一、選擇題1.若向量a,b,c滿足a∥b且a⊥c,則c·(a+2b)=( )A.4 B.3C.2 D.0解析:由a∥b及a⊥c,得b⊥c,則c·(a+2b)=c·a+2c·b=0.答案:D2.若向量a與
【總結】2020/12/19向量的加法看書P80~83(限時6分鐘)學習目標:通過實例,掌握向量的加法運算及理解其幾何意義。熟練運用加法的“三角形法則”和“平行四邊形”法則2020/12/19由于大陸和臺灣沒有直航,因此要從臺灣去上海探親,乘飛機要先從臺北到香港,再從香港到上海,這兩次位移
2024-11-12 17:12
【總結】1.掌握向量的定義,向量和數(shù)量的區(qū)別。2.通過力和力的分析實例,了解向量的實際背景。3.掌握向量表示,零向量和單位向量。4.平行向量、共線向量、相等向量的定義。平面向量一看書P82~84(限時5分鐘)學習目標1.什么是向量?向量和數(shù)量有何不同?向量:即有大小又有方向的量(數(shù)量:只有大小,沒有方向的量)
2024-11-09 00:53
【總結】坐標表示、模、夾角復習引入1.平面向量的數(shù)量積(內(nèi)積)的定義:復習引入1.平面向量的數(shù)量積(內(nèi)積)的定義:.)(cos||||或內(nèi)積的數(shù)量積與叫做,我們把數(shù)量夾角為它們的,和已知兩個非零向量bababa??復習引入1.平面向量的數(shù)量積
2024-10-18 14:26
【總結】題型二:平面向量的共線問題1、若A(2,3),B(x,4),C(3,y),且=2,則x=,y=2、已知向量a、b,且=a+2b,=-5a+6b,=7a-2b,則一定共線的三點是()A.A、B、DB.A、B、CC.B、C、DD.A、C、D3、如果e1、e2是平面α內(nèi)兩個不共線的向量
2025-03-25 01:23
【總結】a和b,它們的夾角為θ,則a·b=abcos.a·b稱為向量a與b的數(shù)量積(或內(nèi)積).θa·b等于a的長度a與b在a的方向上的投影bcos的乘積.θ6.a·b≤ab.3.a⊥
2024-11-10 08:35
【總結】新課標人教版課件系列《高中數(shù)學》必修4《平面向量基本定理》教學目的?(1)了解平面向量基本定理;理解平面向量的坐標的概念;?(2)初步掌握應用向量解決實際問題的重要思想方法;?(3)能夠在具體問題中適當?shù)剡x取基底,使其他向量都能夠用基底來表達.?教學重點:平面向量基本定理.
2024-11-12 18:20
【總結】第一篇:平面向量的數(shù)量積及其應用教學設計說明 平面向量的數(shù)量積及其應用設計立意及思路 平面向量在教材中獨立成章,它既反映了現(xiàn)實世界的數(shù)量關系,又體現(xiàn)了幾何圖形的位置關系,具有代數(shù)形式和幾何形式的“...
2024-11-15 04:13
【總結】平面向量數(shù)量積的坐標表示、模、夾角一.復習回顧:問題:回憶一下,向量的數(shù)量積?又如何用數(shù)量積、長度來反映夾角?向量的運算律有哪些?平面向量的數(shù)量積有那些性質?答案:babababa????????cos,cos運算律有:)()().(2bababa????????abba??
2025-01-20 04:59
【總結】“平面向量”誤區(qū)警示“平面向量”概念繁多容易混淆,對于初學者更是一頭霧水.現(xiàn)將與平面向量基本概念相關的誤區(qū)整理如下.⑴向量就是有向線段解析:向量常用一條有向線段來表示,有向線段的長度表示向量的大小,箭頭所指的方向表示向量的方向.有向線段是向量的一種表示方法,不能說向量就是有向線段.⑵若向量與相等,則有向線段AB與CD重合解析:長度相等且方向相同的向量叫做相等向量.因此,
2025-04-16 23:21
【總結】平面向量基本定理一、問題情境(1)如何求此時豎直和水平方向速度?(2)利用什么法則?BAMN探究:給定平面內(nèi)兩個向量、,平面內(nèi)任一向量是否都可以在這兩向量方向上分解呢?分解平移共同起點OAB?鏈接幾何畫板平面向量基本定理
【總結】第一篇:平面向量的應用 平面向量的應用 平面向量是一個解決數(shù)學問題的很好工具,它具有良好的運算和清晰的幾何意義。在數(shù)學的各個分支和相關學科中有著廣泛的應用。下面舉例說明。 一、用向量證明平面幾何...
2024-11-15 03:33