【總結(jié)】§平面向量的數(shù)量積【學(xué)習(xí)目標(biāo)、細(xì)解考綱】的意義;體會數(shù)量積與投影的關(guān)系。。,可以處理有關(guān)長度、角度和垂直問題。【知識梳理、雙基再現(xiàn)】ab與的夾角。______向量ab與,我們把______________叫ab與的數(shù)量積。(或________)記作___________即a
2024-12-02 08:37
【總結(jié)】§2.平面向量的基本定理【學(xué)習(xí)目標(biāo)、細(xì)解考綱】;.【知識梳理、雙基再現(xiàn)】:如果1e?,2e?是同一平面內(nèi)兩個的向量,a?是這一平面內(nèi)的任一向量,那么有且只有一對實數(shù),21,??使。其中,不共線的這兩個向量,1e?2e?叫做表示這一平
2024-11-30 13:51
【總結(jié)】高考總復(fù)習(xí)高中數(shù)學(xué)高考總復(fù)習(xí)平面向量基本定理及坐標(biāo)表示習(xí)題及詳解一、選擇題1.(2010·安徽)設(shè)向量a=(1,0),b=(,),則下列結(jié)論中正確的是( )A.|a|=|b| B.a(chǎn)·b=C.a(chǎn)-b與b垂直 D.a(chǎn)∥b[答案] C[解析] |a|=1,|b|=,故A錯;a·b=,故B錯;(a-b)·b=
2025-04-17 12:41
【總結(jié)】§2.平面向量的坐標(biāo)運(yùn)算【學(xué)習(xí)目標(biāo)、細(xì)解考綱】1、會用坐標(biāo)表示平面向量的加法、減與數(shù)乘運(yùn)算。2、培養(yǎng)細(xì)心、耐心的學(xué)習(xí)習(xí)慣,提高分析問題的能力?!局R梳理、雙基再現(xiàn)】1、兩個向量和差的坐標(biāo)運(yùn)算已知:??1122(,),(,)axybxx,?為一實數(shù)則?????122
【總結(jié)】5of5快樂課堂學(xué)數(shù)學(xué)-多余老師趣講“平面向量”-高中數(shù)學(xué)必修4一、本單元概述向量,最初被應(yīng)用于物理學(xué)。很多物理量如力、速度、位移以及將要學(xué)習(xí)到的電場強(qiáng)度、磁感應(yīng)強(qiáng)度等都是向量。大約公元前350年前,古希臘著名學(xué)者亞里士多德就知道了力可以表示成向量,兩個力的組合作用可用著名的平行四邊形法則來得到?!跋蛄俊币辉~來自力學(xué)、解析幾何中的有向線段。最先使用有向線段表示
2025-08-04 16:32
【總結(jié)】第1講平面向量的概念與運(yùn)算新疆王新敞特級教師源頭學(xué)子小屋htp:/htp:/人教A版高中數(shù)學(xué)·必修章節(jié)復(fù)習(xí)特級教師王新敞源頭學(xué)子2()C行的向量0新疆王新敞特級教師源頭學(xué)子小屋htp:/htp:/人教A版高中數(shù)學(xué)
2025-06-13 12:24
【總結(jié)】向量的坐標(biāo)表示平面向量基本定理一、填空題1.若e1,e2是平面內(nèi)的一組基底,則下列四組向量能作為平面向量的基底的是________.①e1-e2,e2-e1②2e1+e2,e1+2e2③2e2-3e1,6e1-4e2④e1+e2,e1-e22.下面三種說法中,正確的是________.①一個平面
2024-12-05 10:15
【總結(jié)】課題:平面向量復(fù)習(xí)班級:姓名:學(xué)號:第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】通過本章的復(fù)習(xí),對知識進(jìn)行一次梳理,突出知識間的內(nèi)在聯(lián)系,提高綜合運(yùn)用向量知識解決問題的能力?!菊n前預(yù)習(xí)】1、已知向量a=(5,10),b=(3,4)??,則(1)2a+b=,a
2024-12-05 03:24
【總結(jié)】平面向量【基本概念與公式】【任何時候?qū)懴蛄繒r都要帶箭頭】:既有大小又有方向的量。記作:或。:向量的大?。ɑ蜷L度),記作:或。:長度為1的向量。若是單位向量,則。:長度為0的向量。記作:。【方向是任意的,且與任意向量平行】(共線向量):方向相同或相反的向量。:長度和方向都相同的向量。:長度相等,方向相反的向量。。:;;(指向被減數(shù)):
2025-08-11 10:44
【總結(jié)】《數(shù)學(xué)》必會基礎(chǔ)題型——《平面向量》【基本概念與公式】【任何時候?qū)懴蛄繒r都要帶箭頭】:既有大小又有方向的量。記作:或。:向量的大?。ɑ蜷L度),記作:或。:長度為1的向量。若是單位向量,則。:長度為0的向量。記作:?!痉较蚴侨我獾模遗c任意向量平行】(共線向量):方向相同或相反的向量。:長度和方向都相同的向量。:長度相等,方向相反的向量。。:
2025-04-04 05:10
【總結(jié)】平面向量基本定理考查知識點及角度難易度及題號基礎(chǔ)中檔稍難基底及用基底表示向量1、36、8、9向量夾角問題2、4綜合問題57、10111.已知e1和e2是表示平面內(nèi)所有向量的一組基底,那么下面四組向量中不能作為一組基底的是()A.e1和e1+e2B.e
2024-11-19 19:36
【總結(jié)】【金榜教程】2021年高中數(shù)學(xué)平面向量基本定理檢測試題北師大版必修4(30分鐘50分)一、選擇題(每小題4分,共16分)O是△ABC所在平面內(nèi)一點,D為BC邊中點,且2OAOBOC0???,那么()(A)AOOD?(B)AO2OD?(C)AO3OD?(D)2A
2024-12-03 03:14
【總結(jié)】由于向量的線性運(yùn)算和數(shù)量積運(yùn)算具有鮮明的幾何背景,平面幾何的許多性質(zhì),如平移、全等、相似、長度、夾角都可以由向量的線性運(yùn)算及數(shù)量積表示出來,因此,利用向量方法可以解決平面幾何中的一些問題。平面幾何中的向量方法例1、證明平行四邊形四邊平方和等于兩對角線平方和ABDC已知:平行四邊形ABCD。求證:
2025-08-01 17:29
【總結(jié)】【金榜教程】2021年高中數(shù)學(xué)平面向量的坐標(biāo)檢測試題北師大版必修4(30分鐘50分)一、選擇題(每小題4分,共16分)a=(2,4),b=(x,1),當(dāng)a+b與a-b共線時,x值為()(A)13(B)1(C)12(D)14ABCD中,
2024-11-30 23:42
【總結(jié)】平面向量應(yīng)用舉例1.如果一架飛機(jī)向東飛行200km,再向南飛行300km,記飛機(jī)飛行的路程為s,位移為a,那么()A.s>|a|B.s<|a|C.s=|a|D.s與|a|不能比大小解析:s=200+300=500(km),|a|=2020+3002=10013(km),∴s>