【總結(jié)】橢圓與雙曲線定義的應用2.雙曲線的定義:平面內(nèi)與兩個定點12,FF的距離的差的絕對值等于常數(shù)(小于12FF)的點的軌跡叫做雙曲線.1.橢圓的定義:平面內(nèi)到兩個定點12,FF的距離的和等于常數(shù)(大于12FF)的點的軌跡叫橢圓.思考一:(課本54PB組第2題)
2024-11-09 00:53
【總結(jié)】等差數(shù)列習題課等差數(shù)列及其前n項和第等差數(shù)列的前n項和公式:2)(:)1(1nnaanS??公式dnnnaSn2)1(:)2(1???公式等差數(shù)列的通項公式:dnaan)1(1???基本公式?等差數(shù)列的性質(zhì):?(1)?(
2024-11-09 01:53
【總結(jié)】圓錐曲線習題課1.直線與圓錐曲線的位置關(guān)系:用△判定。2.中點弦問題,常用點差法解決。3.對于垂直問題,常用到x1x2+y1y2=0。4.對于分點問題,可利用向量關(guān)系列出方程。5.解題工具有:韋達定理、弦長公式等。復習回顧:當0°≤θ≤180°時,方程x2cosθ+
2025-08-05 04:08
【總結(jié)】圓錐曲線橢圓雙曲線拋物線定義標準方程幾何性質(zhì)直線與圓錐曲線的位置關(guān)系一、知識點框架雙曲線的定義:1212||||||2,(02||)MFMFaaFF????橢圓的定義:|)|2(,2||||2121FFaaM
2024-08-25 02:16
【總結(jié)】高二年級數(shù)學科輔導講義(第講)學生姓名:授課教師:授課時間:專題雙曲線及其標準方程目標掌握雙曲線的定義、焦點、離心率;漸進線等概念重難點雙曲線的定義和標準方程??键c求雙曲線的標準方程;求弦中點的軌跡方程第一部分、基礎(chǔ)知識梳理(1
2025-07-15 03:56
【總結(jié)】圓錐曲線?解析幾何是在坐標系的基礎(chǔ)上,用坐標表示點、用方程表示點的軌跡——曲線(包括直線)。通過研究方程的性質(zhì),進一步研究曲線的性質(zhì)。也可以說,解析幾何是用代數(shù)的方法研究幾何問題的一門數(shù)學學科。本章是平面解析幾何內(nèi)容中的圓錐曲線部分,是在學生已掌握平面幾何知識與平面直角坐標系、平面向量、兩點距離公式及基本初等函數(shù)、直線與圓的方程等知識的基礎(chǔ)上
2024-11-21 02:39
【總結(jié)】yxoF2MF1(1)雙曲線標準方程中,a0,b0,但a不一定大于b;有別于橢圓中ab.(2)雙曲線標準方程中,如果x2項的系數(shù)是正的,那么焦點在x軸上;如果y2項的系數(shù)是正的,那么焦點在y軸上.有別于橢圓通過比較分母的大小來判定焦點在哪一坐標軸上。(3)雙曲線標準方程中a、b、
2024-11-13 11:43
【總結(jié)】雙曲線方程和性質(zhì)應用xyoax?或ax??ay??ay?或)0,(a?),0(a?xaby??xbay??ace?)(222bac??其中關(guān)于坐標軸和原點都對稱性質(zhì)雙曲線)0,0(12222??
2024-11-12 17:25
【總結(jié)】直線與橢圓的位置關(guān)系直線與橢圓的位置關(guān)系蕭城一中怎么判斷它們之間的位置關(guān)系?問題1:直線與圓的位置關(guān)系有哪幾種?drd0?0?=0幾何法:代數(shù)法:問題3:怎么判斷它們之間的位置關(guān)系?能用幾何法嗎?問題2:直線與橢圓的位置關(guān)系?不能!
2024-08-25 02:00
【總結(jié)】1——(一)23方程的曲線和曲線的方程:⑴曲線上的點的坐標都是方程的解;f(x,y)=00xy在平面上建立直角坐標系:點?????一一對應坐標(x,y)曲線?????曲線的方程坐標化研究一、二、坐標法形成
2025-01-17 15:08
2024-11-09 23:30
【總結(jié)】橢圓的性質(zhì)問題1:①橢圓是不是軸對稱圖形?是不是中心對稱圖形?為什么?②標準位置的橢圓的對稱軸是什么?對稱中心是什么?結(jié)論:①橢圓是軸對稱圖形,也是中心對稱圖形。②標準位置的橢圓的對稱軸是x軸、y軸,原點是它的對稱中心。橢圓的對稱中心叫做橢圓的中心。問題2:?,)(12222分
【總結(jié)】第一課時天涯海角目標1、熟悉橢圓的幾何性質(zhì)(對稱性、范圍、頂點、離心率);2、掌握橢圓中a、b、c、e的幾何意義以及a、b、c的相互關(guān)系;3、理解橢圓的離心率對橢圓形狀的影響;4、能利用橢圓的幾何性質(zhì)求橢圓的標準方程。問題如何畫橢圓的圖形(草圖)123-1
2024-11-12 16:43
2024-11-09 03:51
【總結(jié)】《圓的方程》習題課回顧::::介紹::(x-x1)(x-x2)-(y-y1)(y-y2)=0:x2+y2+D1x+E1y+F1+m(x2+y2+D2x+E2y+F2)=0(m不等于-1)P82第4題P88第4題1.如何判斷點與圓的位置
2024-11-06 14:26