【總結(jié)】......基本不等式及應用一、考綱要求:.2.會用基本不等式解決簡單的最大(小)值問題.3.了解證明不等式的基本方法——綜合法.二、基本不等式基本不等式不等式成立的條件等號成立的條件≤a0,
2025-05-13 23:12
【總結(jié)】高中數(shù)學基本不等式的巧用1.基本不等式:≤(1)基本不等式成立的條件:a>0,b>0.(2)等號成立的條件:當且僅當a=b時取等號.2.幾個重要的不等式(1)a2+b2≥2ab(a,b∈R);(2)+≥2(a,b同號);(3)ab≤2(a,b∈R);(4)≥2(a,b∈R).3.算術(shù)平均數(shù)與幾何平均數(shù)設(shè)a>0,b>0,則a,b的算術(shù)平均數(shù)為,幾何平均數(shù)
2025-04-04 05:08
【總結(jié)】題型1 基本不等式正用a+b≥2例1:(1)函數(shù)f(x)=x+(x0)值域為________;函數(shù)f(x)=x+(x∈R)值域為________;(2)函數(shù)f(x)=x2+的值域為________.解析:(1)∵x0,x+≥2=2,∴f(x)(x0)值域為[2,+∞);當x∈R時,f(x)值域為(-∞,-2]∪[2,+∞);(2)x2+=(x2
2024-08-14 04:52
【總結(jié)】......基本不等式提高題1.已知直線l1:a2x+y+2=0與直線l2:bx﹣(a2+1)y﹣1=0互相垂直,則|ab|的最小值為( ) A.5B.4C.2D.12.已知a>0,b>1且
2025-03-25 00:14
【總結(jié)】基本不等式題型歸納【重點知識梳理】1.基本不等式:(1)基本不等式成立的條件:,.(2)等號成立的條件:當且僅當時,等號成立.2.幾個重要的不等式:(1)();(2)();(3)();(4)().3.算術(shù)平均數(shù)與幾何平均數(shù)設(shè),,則的算術(shù)平均數(shù)為,幾何平均數(shù)為,基本不等式可敘述為兩個正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù).4.利用基本不等式求最值問題
【總結(jié)】......《基本不等式》說課稿各位老師大家好,我選擇的課題是人教A版必修5第三章第四節(jié)《基本不等式》第一課時。下面我將圍繞“教什么”,“怎么教”,“為什么這么教”這三個問題從以下六個方面來闡述我對教材的理解與教學設(shè)計。(一、教
2025-04-17 00:22
【總結(jié)】初二數(shù)學不等式解下列不等式:(1)x-17<-5;(2)>-3;(3)>11;(4)>.(5)3x+1>4;(6)3-x-1;(7)2(x+1)3x;(8)3(x
2025-03-25 07:46
【總結(jié)】基本不等式應用一.基本不等式1.(1)若,則(2)若,則(當且僅當時取“=”)2.(1)若,則(2)若,則(當且僅當時取“=”)(3)若,則(當且僅當時取“=”),則(當且僅當時取“=”);若,則(當且僅當時取“=”)若,則(當且僅當時取“=”),則(當且僅當時取“=”)若,則(當且僅當時取“=”),則(當且僅當時取“=”)
【總結(jié)】高二文科數(shù)學(不等式)周練習題命題人:馮榮聚2016-10-27審核:何瓊英一、選擇題1、不等式2x2-x-10的解集是( )(A)(-,1)(B)(1,+∞)(C)(-∞,1)∪(2,+∞)(D)(-∞,-)∪(1,+∞)2、不等式組的解集是()A
2025-06-23 23:59
【總結(jié)】主講老師:習題講評復習幾個重要的不等式:復習幾個重要的不等式:)(.2,,.122”時取“當且僅當那么如果?????baabbaRba復習幾個重要的不等式:)(.2,,.122”時取“當且僅當那么如果?????ba
2024-11-09 04:45
【總結(jié)】第一篇:不等式證明練習題 不等式證明練習題 (1/a+2/b+4/c)*1 =(1/a+2/b+4/c)*(a+b+c) 展開,得 =1+2a/b+4a/c+b/a+2+4b/c+c/a+2...
2024-10-27 11:21
【總結(jié)】第一篇:均值不等式練習題 均值不等式求最值及不等式證明2013/11/2 3題型 一、均值不等式求最值 例題: 1、湊系數(shù):當0x4時,求y=x(8-2x)的最大值。 2、湊項:已知x...
2024-11-05 18:14
【總結(jié)】第一篇:不等式證明練習題 11n+3恒成立,則n的最大值是()a-bb-ca-c A.2B.3C.4D.61.設(shè)abc,n?N,且 x2-2x+22.若x?(-¥,1),則函數(shù)y=有()2x...
2024-10-29 06:56
【總結(jié)】3.基本不等式的證明1.(a-b)2≥0?a2+b2≥2ab,那么(a)2+(b)2≥2ab,即a+b2≥ab,當且僅當a=b時,等號成立.+b2叫做a、b的算術(shù)平均數(shù).3.ab叫做a、b的幾何平均數(shù).4.基本不等式a+b2≥ab,說明兩個正數(shù)的幾何平均數(shù)不大于它們的
2024-12-05 10:13
【總結(jié)】邊城高級中學張秀洲1、了解兩個正數(shù)的算術(shù)平均數(shù)與幾何平均數(shù).2、理解定理1和定理2(基本不等式).3、掌握用基本不等式求一些函數(shù)的最值及實際的應用問題.自學教材P5—P8解決下列問題二、掌握用基本不等式求一些函數(shù)的最值及實際的應用問題.三、《教材》習題第5、6、7、8、9、10、11題.
2024-08-02 03:13