freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

華師大版九年級數學上冊各章經典測試題-wenkub.com

2025-06-04 16:58 本頁面
   

【正文】 %。,則△ABC是鈍角三角形. 點撥:正確理解命題,并能夠判別命題的真假是非常重要的.:如答圖所示:∵CD⊥AB,BE⊥AC,∴∠ODA=∠OEA.∵OA平分∠BAC, ∴∠BAO=∠CAO,又OA=OA,∴△OAD≌△OAE,∴OD=OE,在△OBD和△OCE中,OD=OE,∠ODB=∠OEC,∠BOD=∠COE,∴△OBD≌△OCE,∴OB=OC. 點撥:此題通過兩次全等使問題得以解決,讀者往往錯誤地直接用△OAB ≌△OAC來解答.:∵∠DBC=∠ACB,∠ABO=∠DCO,∴∠DBC+∠ABO=∠ACB+∠DCO, 即∠ABC=∠DCB,又∠ACB=∠DBC,BC=CB,∴△ACB≌△DBC,∴AB=DC.∵∠ABO=∠DCO, ∠AOB=∠DOC,∴△ABO≌△DCO,∴OA=OD.點撥:此題應用兩次全等使問題得證,學生易直接誤認為△ABO≌△CDO.:在△ABC和△ADC中,∠BAC=∠DAC,AC=AC,∠BCA=∠DCA,∴△BAC≌△DAC,∴BC=DC.在△DCE和△BCE中,EC=EC,∠DCE=∠BCE,CD=CB,∴△DCE≌△BCE,∴∠DEC=∠BEC. 點撥:應認真觀察圖形,能從圖中正確地找出所證的全等三角形, 能靈活地選擇與應用兩三角形全等的識別法.35.(1)證明:、AD,在△ABC和△AED中,AB=AE,∠ABC= ∠AED,BC=ED,∴△ABC≌△AED,∴AC=AD,又∵FC=FD,∴AF⊥CD.(2)BE⊥AF,BE∥CD,△ABE是等腰三角形. 點撥:此題是幾何中的證明及探索題型的綜合應用,有助于培養(yǎng)我們探究的意識.四、:∵,∴AC=BD.∵CE⊥AB,DF⊥AB,∴∠CEA=∠DFB=90176。(27~29題)點撥:以上幾題亦是兩三角形全等題目的應用, 學生在找對應角、對應邊時易出現錯誤.三、30.(1)真命題。AE。AOC?!螩EF.16.△ABD≌△ACD,△ADE≌△ADF,△BDE≌△CDF176。AC和DB.14.△KMN。. 點撥:正確分清原命題的題設與結論是寫出它的逆命題的關鍵. 解:如答圖所示,∵PR⊥AB,PS⊥AC,∴△APR、△APS為直角三角形, 在Rt△APR和Rt△APS中,∵PR=PS,AP=AP,∴Rt△APR≌Rt△APS,∴AR=AS,∠PAR= ∠PAS,∵AQ=PQ,∴∠PAS=∠APQ,∴∠PAR=∠APQ,∴QP∥AR. 點撥:此題是對幾何中的兩三角形全等及平等線等性質定理的應用. 解:第四條直線最多和前三條直線都相交而增加3個交點,第五條直線最多和前四條直線都相交而增加4個交點……第十條直線最多和前9條直線都相交而增加9個交點,這樣,10條直線相交、最多交點的個數為:1+2+3+……+9=45. 點撥:隨著直線數的增加,最多交點數也隨著增加。,∴∠A=90176。△ABF≌△CAE≌△BCD。 (2)用已學過的原理對結論加以分析,揭示其中的規(guī)律.六、學科間綜合題:(6分),已知當物體AB距凸透鏡為2倍焦距,即AO=2f時,成倒立的等大的像A′B′.求像距OA′與f的關系.答案:一、 點撥:此題考查兩三角形全等的識別,應強化訓練 解:∵△ABC和△BDE都是等邊三角形,∴∠DBE=∠ABC=60176。,∠2=48176。,則∠D=____, ∠DAC=______.△ABC中,∠A=90176。 。②QP∥AR。 ( ) 。, , ∴OE=OB,∴∠AOD=90176。45176。,AB=AC=2,∴∠B=∠C=45176。,∴∠OEA+∠AED= 90176。.∵OB=OC,∴△OBC為等邊三角形, 又∵OA∥BC,∴△BCO與△BCA面積相等,即,∴ 點撥:解此題時運用同底等高的三角形面積相等,將所求陰影部分面積轉化為求扇形面積即可.20. 解:∵∠AOB=60176。,∵OA∥BC,∴∠OAB+∠ABC=180176。=44176?!螼AP∠OBP∠AOB=360176。 解:如答圖所示,∵PA、PB切⊙O于A、B,∴∠OAP=∠OBP=90176。. 點撥:應正確區(qū)別圓柱與圓錐的側面展開圖,讀者易將這兩種立體圖形的側面積混淆.二、11. 解:如答圖所示,設AP切⊙O于P,連結OP,則OP⊥△OPA中, OP=3,OA=OB+AB=3+5=8,∴PA=. 點撥:遇切線就連結切點和圓心得過切點的半徑,這是一條常見的輔助線. 解:如答圖所示,連結OA,過O作OM⊥AB,垂足為M,則AM=AB,∵AB=6cm,∴AM=3cm.∵⊙O直徑為10cm,∴OA=10=5(cm),在Rt△OAM中,OM=(cm). 點撥:在解決與弦有關的問題時,常過圓心作弦的垂線段, 再利用垂徑定理和勾股定理來解決. 解:如答圖所示,∵AB⊥AC,OM⊥AB,ON⊥AC,四邊形OMAN是距形, 且AM=AB,AN=AC,∴OM=AN=2,ON=AM=3, 即AB=3, AC=2,∴AB=6,AC=4. 點撥:運用垂徑定理和矩形的有關性質來解決該題,從而避免讀者構造直角三角形來解決的思路,讀者難以依據題意正確地畫圖.14. 解:連結BM, ∵AM是直徑,∴∠MBA=90176。,∴的度數=()的度數=45176。,∴的度數=30176。,∴∠ABC=∠OBA+OBC=60176。”寫法,應寫成“的度數=100176。,∴的度數=100176。, ∴圖中能用字母表示的直角共有6個. 點撥:本題是切線長定理的應用,讀者易將△ABP誤認為是等邊三角形,易漏落∠OCA、∠OCB、∠PCA、∠PCB中的某幾個角. 解:過O作直線EF⊥AB,垂足為E,交CD于F,連結OA、OC.∵AB∥CD,∴EF⊥CD,∴AE= AB,CF= CD.∵AB=12,CD=16,∴AE=6,CF=8.∵在Rt△OAE中,OA=10,AE=6, ∴OE==8cm ,∵在Rt△OCF中,OC=10,CF=8,∴OF= 當弦AB、CD位于圓心O的兩側時,EF=OE+OF=8+6=14(cm)。,半徑為6,C、D分別是的三等分點, 則陰影部分的面積等于_______.三、解答題(21~25題每題8分,26題10分,共50分),已知兩同心圓中,大圓的弦AB、AC切小圓于D、E,△ABC 的周長為12cm,求△ADE的周長.,AB是⊙O的直徑,AE平分∠BAC交⊙O于點E,過點E作⊙O的切線交AC于點D,試判斷△AED的形狀,并說明理由.,AB是⊙O的直徑. (1)操作:在⊙O上任取一點C(不與A、B重合),過點C作⊙O的切線。 176。 176。 176。 176。 176。x2,構造關于k的方程,同時,要注意所求出的k值,應使方程有兩個實數根,即先求后檢. (2)構造方程時,要利用p=(y1+y2),q=y1y2,則以y1,y2為根的一元二次方程為y2+py+q=0.22.(1)證明:方程x2+2x+2ca=0有兩個相等的實根,∴△=0,即△=(2)24(2ca)=0,解得a+b=2c,方程3cx+2b=2a的根為0,則2b=2a,a=b,∴2a=2c,a=c, ∴a=b=c,故△ABC為等邊三角形. (2)解:∵a、b相等,∴x2+mx3m=0有兩個相等的實根,∴△=0,∴△=m2+413m=0,即m1=0,m2=12.∵a、b為正數,∴m1=0(舍),故m=12.:如答圖,易證△ABC∽△ADC,∴,AC2=ADx2=2k+1, x12+x22=(x1+x2)22 x13或x=177。若有一個根為零,則c= .+7=0的兩根恰好是一個直角三角形兩條直角邊的長,則這個直角三角形的斜邊長是___________.=0與x2x+3=0的所有實數根的和等于__ __.%后價格是a元,那么原價是_______ ___.,這兩數的平方和是25, 以這兩數為根的一元二次方程是___________.(1k)+k2=0有實數根α,β,那么α+β的取值范圍是_______.=0的所有根的絕對值之和,則A2=________., 而后折起來做一個沒蓋的盒子,鐵片的長是寬的2倍,作成的盒子容積為1. 5 立方分米, 則鐵片的長等于________,寬等于________.三、解答題:(每題7分,共21分),x2是關于x的方程x2(k+2)x+2k+1=0的兩個實數根,且x12+x22=11. (1)求k的值。③驗根極易被忽略.:設王老師步行的速度是x千米/時,則騎自行車的速度是3x千米/時, 20分鐘=小時,由題意,得,解得x=5. 經檢驗x=5是所列方程的根,∴3x=35=15(千米/時). 答:王老師步行的速度是5千米/時,騎自行車的速度是15千米/時. 點撥:①王老師騎自行車接小剛所走路程易錯以為是(3+)千米. ②行程問題中的單位不統(tǒng)一是個易忽略點.:根據題意寫出化學反應方程式: 80 64 設原混合物中金屬銅有x克,則含有氧化銅(2x)克結果中新生成氧化銅()克,由題意,列方程為:,解得x==1是所列方程的根. 答:原混合物中金屬銅有1克. 點撥:這是一道數字與化學學科的綜合題,本題既考查了化學反應的生成和對元素式量的記憶,也考查了學生利用列分式方程解決問題的能力,這是今后中考命題的趨勢,意在考查學生學科間知識的綜合應用水平.第22章 一元二次方程全章檢測卷 一、選擇題:(每小題2分,共20分)( )A.(a3)x2=8 (a≠0) +bx+c=0 C.(x+3)(x2)=x+5 D.+c=0(a≠0),若方程有解,則必須有C等于( ) C. +2(ab)x+(ba)=0有兩個相等的實數根,則a:b等于( ) 或1 =3y+4有實根,則k的取值范圍是( ) ≥ 且k≠0 ≥ 且k≠0 的兩根分別為a, 則方程 的根是( )A. B. C. D.+2(k+2)x+k2=0的兩個實數根之和大于4,則k的取值范圍是( )1 0 k0 ≤k0+6=0的兩個實數根分別比方程x2+kx+6=0的兩個實數根大5,則k的值為( ) B. 的值等于零的x是( ) │x│+3=0的解是( )=177。
點擊復制文檔內容
教學教案相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1