【總結(jié)】相似三角形與全等三角形的綜合復(fù)習(xí)友情提示:請根據(jù)課本相關(guān)內(nèi)容,快速解決下列問題,8分鐘后交流展示你的成果?!疚曳此迹沂崂怼浚ㄒ唬┫嗨迫切?.定義:各角對應(yīng)________,各邊對應(yīng)成________的兩個三角形叫做相似三角形.2.判定(1)平行于三角
2024-11-24 14:14
【總結(jié)】全等三角形綜合復(fù)習(xí)切記:“有三個角對應(yīng)相等”和“有兩邊及其中一邊的對角對應(yīng)相等”的兩個三角形不一定全等。例1.如圖,四點共線,,,,。求證:。例2.如圖,在中,是∠ABC的平分線,,垂足為。求證:。例3.如圖,在中,,。為延長線上一點,點在上,,連接和。求證:。例4.如圖,//,//,求證:。例5.如圖,分別是外角和的平分線,它們交于
2025-06-23 18:30
【總結(jié)】人教新課標四年級數(shù)學(xué)下冊本節(jié)課我們主要來學(xué)習(xí)三角形的分類,同學(xué)們要知道分類的方法以及各類三角形的特點。各種各樣的三角形“神舟”三角形郵票銳角銳角三角形:三個角都是銳角的三角形。直角直角三角形:有一個角是直角的三角形。鈍角鈍角三角形:有一個角是鈍角的三角形?!傲鲃蛹t旗”有
2024-11-22 04:21
【總結(jié)】........相似三角形題一、選擇填空題1、如圖1,已知AD與VC相交于點O,AB//CD,如果∠B=40°,∠D=30°,則∠AOC的大小為()APCB°°
2025-03-25 06:30
【總結(jié)】......全等三角形綜合復(fù)習(xí)切記:“有三個角對應(yīng)相等”和“有兩邊及其中一邊的對角對應(yīng)相等”的兩個三角形不一定全等。例1.如圖,四點共線,,,,。求證:。例2.如圖,在中,是∠ABC的平分線,,垂足為。求證:。例
2025-06-23 03:58
【總結(jié)】三角形三邊關(guān)系、三角形內(nèi)角與定理三角形三邊關(guān)系、三角形內(nèi)角和定理 定理:三角形兩邊的和大于第三邊?! ⊥普摚喝切蝺蛇叺牟钚∮诘谌??! ”磉_式:△ABC中,設(shè)a>b>c 則b-c<a<b+c a-c<b<a+c a-b<c<a+b給出三條線段的長度,判斷它們能否構(gòu)成三角形?! 》椒ǎㄔO(shè)a、b、c
2024-08-03 00:01
【總結(jié)】-1-2022年中考“解直角三角形”試題匯編一、選擇題:1.(2022年襄樊市)計算:cos245°+tan60°?cos30°等于().CA、1B、2C、2D、32、(2022湖北省天門)化簡2(tan301)?=()。A
2025-01-10 13:07
【總結(jié)】河北周建杰分類(2020年南京市)8.如圖,O是等邊三角形ABC的外接圓,O的半徑為2,則等邊三角形ABC的邊長為()A.3B.5C.23D.25(2020年南京市)14.若等腰三角形的一個外角為70,則它的底角為度以下是河南省高建國分類:(
2024-08-22 09:02
【總結(jié)】1.如圖1所示,在△ABC中,∠A=90°,BD平分∠ABC,AD=2cm,則點D到BC的距離為________cm.圖1圖22.如圖2所示,在RtΔABC中,∠C=90°,BD是∠ABC的平分線,交AC于D,若CD=n,AB=m,則ΔABD的面積是()A.B.C.mn D.2mn3.如圖,在
2025-03-24 05:44
【總結(jié)】作業(yè)布置評價小結(jié)鞏固練習(xí)講授新課復(fù)習(xí)判定兩個三角形全等要具備什么條件?
2024-11-09 03:54
2024-08-25 01:10
【總結(jié)】三角形全等【知識要點】1.兩個能夠重合的三角形叫做全等三角形,全等三角形的對應(yīng)邊相等,對應(yīng)角相等.2.全等三角形的判定方法有(1)SAS;(2)ASA;(3)AAS;(4)SSS.(5)HL.3.兩個三角形的兩邊和一角對應(yīng)相等,或兩個三角形的三個角對應(yīng)相等,這兩個三角形不一定全等.【復(fù)習(xí)指導(dǎo)】1.應(yīng)用全等三角形性質(zhì)解決問
2025-03-24 06:15
【總結(jié)】......相似三角形章節(jié)復(fù)習(xí)知識點回顧一,比例線段在四條線段a,b,c,d中,如果a與b的比等于c與d的比,即,那么這四條線段a,b,c,d叫做,簡稱
2025-04-17 07:34
【總結(jié)】......全等三角形拔高練習(xí)A:AD平分∠BAC,AC=AB+BD,求證:∠B=2∠CCDB,中,AB=2AC,AD平分,且AD=BD,求證:CD⊥AC,四邊形ABCD中,AB∥DC
2025-03-24 07:39
【總結(jié)】......成功源于努力!相似三角形的判定(提高) 一、選擇題 1.已知△A1B1C1與△A2B2C2的相似比為4:3,△A2B2C2與△A3B3C3的相似比為4:5,則△A1B1C1與△A3B3C3的相似比
2025-03-25 06:31