【總結(jié)】一、函數(shù)極值的定義oxyab)(xfy?1x2x3x4x5x6xoxyoxy0x0x.)()(,)()(,,,;)()(,)()(,,,,),(,),()(000000000的一個極小值是函數(shù)就稱均成立外除了點(diǎn)任何點(diǎn)對于這鄰域內(nèi)的的一個鄰域如果存在著點(diǎn)
2025-07-26 20:14
【總結(jié)】精銳教育學(xué)科教師輔導(dǎo)講義學(xué)員編號:年級:高二課時數(shù):學(xué)員姓名:張欣蕾輔導(dǎo)科目:數(shù)學(xué)學(xué)科教師:李欣授課類型T導(dǎo)數(shù)與函數(shù)極值與最值CT
2025-05-16 08:26
【總結(jié)】回顧曲邊梯形求面積的問題??badxxfA)(第八節(jié)定積分的幾何應(yīng)用曲邊梯形由連續(xù)曲線)(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成。abxyo)(xfy?abxyo)(xfy?提示若用A?表示任一小區(qū)間],[xx
2025-04-21 04:48
【總結(jié)】【高考地位】導(dǎo)數(shù)在研究函數(shù)的極值與最值問題是高考的必考的重點(diǎn)內(nèi)容,已由解決函數(shù)、數(shù)列、不等式問題的輔助工具上升為解決問題的必不可少的工具,特別是利用導(dǎo)數(shù)來解決函數(shù)的極值與最值、零點(diǎn)的個數(shù)等問題,在高考中以各種題型中均出現(xiàn),對于導(dǎo)數(shù)問題中求參數(shù)的取值范圍是近幾年高考中出現(xiàn)頻率較高的一類問題,其試題難度考查較大.【方法點(diǎn)評】類型一利用導(dǎo)數(shù)研究函數(shù)的極值使用情景:一般函數(shù)類型
2025-03-25 23:06
【總結(jié)】曲率是描述曲線局部性質(zhì)(彎曲程度)的量。1M3M2??2M2S?1S?MM?1S?2S?NN???弧段彎曲程度越大,轉(zhuǎn)角越大.轉(zhuǎn)角相同,弧段越短,彎曲程度越大一、平面曲線的曲率概念1??第十一節(jié)曲線的曲率??????S?S)?.M?.MC0Myxo.s
2025-04-21 04:19
【總結(jié)】函數(shù)極值與最值研究畢業(yè)論文目錄摘要....................................................(1)引言....................................................(2)1函數(shù)極值.......................................
2025-06-19 13:07
【總結(jié)】主要內(nèi)容典型例題第六章定積分及其應(yīng)用習(xí)題課(一)問題1:曲邊梯形的面積問題2:變速直線運(yùn)動的路程存在定理廣義積分定積分定積分的性質(zhì)定積分的計(jì)算法牛頓-萊布尼茨公式()d()()bafxxFbFa??
2024-08-30 12:42
【總結(jié)】課題:導(dǎo)數(shù)與函數(shù)的單調(diào)性、極值、最值科目:數(shù)學(xué)教學(xué)對象:高三課時第1課時提供者:段秀香單位:靜海第六中學(xué)一、教學(xué)內(nèi)容分析 現(xiàn)在中學(xué)數(shù)學(xué)新教材中,導(dǎo)數(shù)(選修2-2)處于一種特殊的地位,是高中數(shù)學(xué)知識的一個重要交匯點(diǎn),是聯(lián)系多個章節(jié)內(nèi)容以及解決相關(guān)問題的重要工具。天津高考中必有考一道解答題(如2009-2011年常規(guī)題或2012-2014年壓軸題)和一道選擇
2025-04-17 00:39
【總結(jié)】一、函數(shù)極限的定義三、小結(jié)思考題二、函數(shù)極限的性質(zhì)第二節(jié)函數(shù)的極限一、函數(shù)極限的定義在自變量的某個變化過程中,如果對應(yīng)的函數(shù)值無限接近于某個確定的常數(shù),那么這個確定的數(shù)叫做自變量在這一變化過程中函數(shù)的極限。下面,我們將主要研究以下兩種情形:;的變化情形對應(yīng)的函數(shù)值任意接近于有限值自
2024-08-30 12:44
【總結(jié)】若由方程可確定y是x的函數(shù),由表示的函數(shù),稱為顯函數(shù).例如,可確定顯函數(shù)可確定y是x的函數(shù),但此隱函數(shù)不易顯化.則稱此函數(shù)為隱函數(shù).第三節(jié)隱函數(shù)的導(dǎo)數(shù)和由參數(shù)方程確定的函數(shù)的導(dǎo)數(shù)一、隱函數(shù)的導(dǎo)數(shù)0),(?yxF
2025-08-01 16:24
【總結(jié)】一、定積分的元素法二、平面圖形的面積第七節(jié)定積分的幾何應(yīng)用三、旋轉(zhuǎn)體的體積四、平行截面面積已知的立體的體積五、小結(jié)回顧曲邊梯形求面積的問題()dbaAfxx??一、定積分的元素法曲邊梯形由連續(xù)曲線)(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍
2025-08-11 16:42
【總結(jié)】一、由邊際函數(shù)求原函數(shù)二、由變化率求總量第八節(jié)定積分的經(jīng)濟(jì)應(yīng)用三、收益流的現(xiàn)值和將來值一、由邊際函數(shù)求原函數(shù)25()7Cxx???0()(0)()dxCxCCxx????0251000(7)dxxx????例1已知邊際成本為,固
【總結(jié)】一、近似計(jì)算二、計(jì)算定積分三、微分方程的冪級數(shù)解法四、小結(jié)思考題第五節(jié)函數(shù)的冪級數(shù)展開式的應(yīng)用一、近似計(jì)算,21????????naaaA,21naaaA??????.21??????nnnaar誤差兩類問題:,求近似值并估計(jì)精度;,確定項(xiàng)數(shù).關(guān)健:通過估計(jì)余項(xiàng),確定精度
【總結(jié)】(1)配方法(2)換元法(3)圖象法(4)單調(diào)性法(5)不等式法(6)導(dǎo)數(shù)法(7)數(shù)形結(jié)合法(8)判別式法(9)三角函數(shù)有界性一、求函數(shù)最值的常用方法:最值問題是數(shù)學(xué)的重要內(nèi)容之一,是解決數(shù)學(xué)應(yīng)用的基礎(chǔ)。二、典型例題例1:對每個實(shí)數(shù)x,設(shè)f(x)是y=2
2024-11-07 00:41
【總結(jié)】多元函數(shù)的極值與最值的求法摘要在實(shí)際問題中,往往會遇到多元函數(shù)的最大值、、最小值問題與極大值、極小值有密切聯(lián)系.求多元函數(shù)極值,,可以利用函數(shù)的極值來求函數(shù)的最大值和最小值,但是由于自變量個數(shù)的增加,從而使該問題更具復(fù)雜性.這里主要討論二元函數(shù),對于二元以上的函數(shù)極值可以類似加以解決.求多元函數(shù)的極值,本文主要采用以下方法:(1)利用二元函
2025-06-18 12:53