freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

小學(xué)奧數(shù)標(biāo)準(zhǔn)教案一份-資料下載頁

2024-10-28 21:18本頁面
  

【正文】 次多了210只球。因此拿了十次后,多了21+22+?+210 =2(1+2+?+10)=255=110(只)。加上原有的3只球,盒子里共有球110+3=113(只)。綜合列式為:(31)(1+2+?+10)+3 =2[(1+10)10247。2]+3=113(只)。練習(xí)3:(1)2+4+6+?+200;(2)17+19+21+?+39;(3)5+8+11+14+?+50;(4)3+10+17+24+?+101。,末項是93,公差是4的等差數(shù)列的和。,公差是5的等差數(shù)列的前30項的和。,敲打的次數(shù)等于該鐘點數(shù),每半點鐘也敲一下。問:時鐘一晝夜敲打多少次?。,十位數(shù)比個位數(shù)大的數(shù)共有多少個?第四講我們在三年級已經(jīng)學(xué)習(xí)了能被2,3,5整除的數(shù)的特征,這一講我們將討論整除的性質(zhì),并講解能被4,8,9整除的數(shù)的特征。數(shù)的整除具有如下性質(zhì): 綠藤星教育(***)小學(xué)奧數(shù)基礎(chǔ)教程性質(zhì)1 如果甲數(shù)能被乙數(shù)整除,乙數(shù)能被丙數(shù)整除,那么甲數(shù)一定能被丙數(shù)整除。例如,48能被16整除,16能被8整除,那么48一定能被8整除。性質(zhì)2 如果兩個數(shù)都能被一個自然數(shù)整除,那么這兩個數(shù)的和與差也一定能被這個自然數(shù)整除。例如,21與15都能被3整除,那么21+15及2115都能被3整除。性質(zhì)3 如果一個數(shù)能分別被兩個互質(zhì)的自然數(shù)整除,那么這個數(shù)一定能被這兩個互質(zhì)的自然數(shù)的乘積整除。例如,126能被9整除,又能被7整除,且9與7互質(zhì),那么126能被97=63整除。利用上面關(guān)于整除的性質(zhì),我們可以解決許多與整除有關(guān)的問題。為了進(jìn)一步學(xué)習(xí)數(shù)的整除性,我們把學(xué)過的和將要學(xué)習(xí)的一些整除的數(shù)字特征列出來:(1)一個數(shù)的個位數(shù)字如果是0,2,4,6,8中的一個,那么這個數(shù)就能被2整除。(2)一個數(shù)的個位數(shù)字如果是0或5,那么這個數(shù)就能被5整除。(3)一個數(shù)各個數(shù)位上的數(shù)字之和如果能被3整除,那么這個數(shù)就能被3整除。(4)一個數(shù)的末兩位數(shù)如果能被4(或25)整除,那么這個數(shù)就能被4(或25)整除。(5)一個數(shù)的末三位數(shù)如果能被8(或125)整除,那么這個數(shù)就能被8(或125)整除。(6)一個數(shù)各個數(shù)位上的數(shù)字之和如果能被9整除,那么這個數(shù)就能被9整除。其中(1)(2)(3)是三年級學(xué)過的內(nèi)容,(4)(5)(6)是本講要學(xué)習(xí)的內(nèi)容。綠藤星教育(***)小學(xué)奧數(shù)基礎(chǔ)教程因為100能被4(或25)整除,所以由整除的性質(zhì)1知,整百的數(shù)都能被4(或25)整除。因為任何自然數(shù)都能分成一個整百的數(shù)與這個數(shù)的后兩位數(shù)之和,所以由整除的性質(zhì)2知,只要這個數(shù)的后兩位數(shù)能被4(或25)整除,這個數(shù)就能被4(或25)整除。這就證明了(4)。類似地可以證明(5)。(6)的正確性,我們用一個具體的數(shù)來說明一般性的證明方法。837=800+30+7 =8100+310+7 =8(99+1)+3(9+1)+7 =899+8+39+3+7 =(899+39)+(8+3+7)。因為99和9都能被9整除,所以根據(jù)整除的性質(zhì)1和性質(zhì)2知,(8x99+3x9)能被9整除。再根據(jù)整除的性質(zhì)2,由(8+3+7)能被9整除,就能判斷837能被9整除。利用(4)(5)(6)還可以求出一個數(shù)除以4,8,9的余數(shù):(4‘)一個數(shù)除以4的余數(shù),與它的末兩位除以4的余數(shù)相同。(5')一個數(shù)除以8的余數(shù),與它的末三位除以8的余數(shù)相同。(6')一個數(shù)除以9的余數(shù),與它的各位數(shù)字之和除以9的余數(shù)相同。例1 在下面的數(shù)中,哪些能被4整除?哪些能被8整除?哪些能被9整除? 234,789,7756,8865。解:能被4整除的數(shù)有7756,3728,8064;能被8整除的數(shù)有3728,8064; 能被9整除的數(shù)有234,8865,8064。綠藤星教育(***)小學(xué)奧數(shù)基礎(chǔ)教程例2 在四位數(shù)56□2中,被蓋住的十位數(shù)分別等于幾時,這個四位數(shù)分別能被9,8,4整除?解:如果56□2能被9整除,那么5+6+□+2=13+□應(yīng)能被9整除,所以當(dāng)十位數(shù)是5,即四位數(shù)是5652時能被9整除;如果56□2能被8整除,那么6□2應(yīng)能被8整除,所以當(dāng)十位數(shù)是3或7,即四位數(shù)是5632或5672時能被8整除;如果56□2能被4整除,那么□2應(yīng)能被4整除,所以當(dāng)十位數(shù)是1,3,5,7,9,即四位數(shù)是5612,5632,5652,5672,5692時能被4整除。到現(xiàn)在為止,我們已經(jīng)學(xué)過能被2,3,5,4,8,9整除的數(shù)的特征。根據(jù)整除的性質(zhì)3,我們可以把判斷整除的范圍進(jìn)一步擴(kuò)大。例如,判斷一個數(shù)能否被6整除,因為6=23,2與3互質(zhì),所以如果這個數(shù)既能被2整除又能被3整除,那么根據(jù)整除的性質(zhì)3,可判定這個數(shù)能被6整除。同理,判斷一個數(shù)能否被12整除,只需判斷這個數(shù)能否同時被3和4整除;判斷一個數(shù)能否被72整除,只需判斷這個數(shù)能否同時被8和9整除;如此等等。例3 從0,2,5,7四個數(shù)字中任選三個,組成能同時被2,5,3整除的數(shù),并將這些數(shù)從小到大進(jìn)行排列。解:因為組成的三位數(shù)能同時被2,5整除,所以個位數(shù)字為0。根據(jù)三位數(shù)能被3整除的特征,數(shù)字和2+7+0與5+7+0都能被3整除,因此所求的這些數(shù)為270,570,720,750。例4 五位數(shù)分析與解:已知以能被72整除,問:A與B各代表什么數(shù)字?能被72整除。因為72=89,8和9是互質(zhì)數(shù),所既能被8整除,又能被9整除。根據(jù)能被8整除的數(shù)的特征,要求綠藤星教育(***)小學(xué)奧數(shù)基礎(chǔ)教程能被8整除,由此可確定B=6。再根據(jù)能被9整除的數(shù)的特征,的各位數(shù)字之和為A+3+2+9+B=A+3-f-2+9+6=A+20,因為l≤A≤9,所以21≤A+20≤29。在這個范圍內(nèi)只有27能被9整除,所以A=7。解答例4的關(guān)鍵是把72分解成89,再分別根據(jù)能被8和9整除的數(shù)的特征去討論B和A所代表的數(shù)字。在解題順序上,應(yīng)先確定B所代表的數(shù)字,因為B代表的數(shù)字不受A的取值大小的影響,一旦B代表的數(shù)字確定下來,A所代表的數(shù)字就容易確定了。例5 六位數(shù)是6的倍數(shù),這樣的六位數(shù)有多少個?分析與解:因為6=23,且2與3互質(zhì),所以這個整數(shù)既能被2整除又能被3整除。由六位數(shù)能被2整除,推知A可取0,2,4,6,8這五個值。再由六位數(shù)能被3整除,推知 3+A+B+A+B+A=3+3A+2B能被3整除,故2B能被3整除。B可取0,3,6,9這4個值。由于B可以取4個值,A可以取5個值,題目沒有要求A≠B,所以符合條件的六位數(shù)共有54=20(個)。例6 要使六位數(shù)表什么數(shù)字?分析與解:因為36=49,且4與9互質(zhì),所以這個六位數(shù)應(yīng)既能被4整除又能被9整除。六位數(shù)此C可取1,3,5,7,9。要使所得的商最小,就要使這個六位數(shù)盡可能小。因此首先是A的能被4整除,就要能被4整除,因能被36整除,而且所得的商最小,問A,B,C各代盡量小,其次是B盡量小,最后是C盡量小。先試取A=0。六位數(shù)綠藤星教育(***)小學(xué)奧數(shù)基礎(chǔ)教程各位數(shù)字之和為12+B+C。它應(yīng)能被9整除,因此B+C=6或B+C=15。因為B,C應(yīng)盡量小,所以B+C=6,而C只能取1,3,5,7,9,所以要使盡可能小,應(yīng)取B=1,C=5。當(dāng)A=0,B=1,C=5時,六位數(shù)能被36整除,而且所得商最小,為150156247。36=4171。練習(xí)41.6539724能被4,8,9,24,36,72中的哪幾個數(shù)整除?2.個位數(shù)是5,且能被9整除的三位數(shù)共有多少個?3.一些四位數(shù),百位上的數(shù)字都是3,十位上的數(shù)字都是6,并且它們既能被2整除又能被3整除。在這樣的四位數(shù)中,最大的和最小的各是多少?4.五位數(shù)能被12整除,求這個五位數(shù)。5.有一個能被24整除的四位數(shù)□23□,這個四位數(shù)最大是幾?最小是幾?6.從0,2,3,6,7這五個數(shù)碼中選出四個,可以組成多少個可以被8整除的沒有重復(fù)數(shù)字的四位數(shù)?7.在123的左右各添一個數(shù)碼,使得到的五位數(shù)能被72整除。8.學(xué)校買了72只小足球,發(fā)票上的總價有兩個數(shù)字已經(jīng)辨認(rèn)不清,只看到是□□元,你知道每只小足球多少錢嗎? 第5講 棄九法從第4講知道,如果一個數(shù)的各個數(shù)位上的數(shù)字之和能被9整除,那么這個數(shù)能被9整除;如果一個數(shù)各個數(shù)位上的數(shù)字之和被9除余數(shù)是幾,那么這個數(shù)被9除的余數(shù)也一定是幾。利用這個性質(zhì)可以迅速地判斷一個數(shù)能否被9整除或者求出被9除的余數(shù)是幾。綠藤星教育(***)小學(xué)奧數(shù)基礎(chǔ)教程例如,3645732這個數(shù),各個數(shù)位上的數(shù)字之和為3+6+4+5+7+3+2=30,30被9除余3,所以3645732這個數(shù)不能被9整除,且被9除后余數(shù)為3。但是,當(dāng)一個數(shù)的數(shù)位較多時,這種計算麻煩且易錯。有沒有更簡便的方法呢?因為我們只是判斷這個式子被9除的余數(shù),所以凡是若干個數(shù)的和是9時,就把這些數(shù)劃掉,如3+6=9,4+5=9,7+2=9,把這些數(shù)劃掉后,最多只剩下一個3(如下圖),所以這個數(shù)除以9的余數(shù)是3。這種將和為9或9的倍數(shù)的數(shù)字劃掉,用剩下的數(shù)字和求除以9的余數(shù)的方法,叫做棄九法。一個數(shù)被9除的余數(shù)叫做這個數(shù)的九余數(shù)。利用棄九法可以計算一個數(shù)的九余數(shù),還可以檢驗四則運算的正確性。例1 求多位數(shù)764582***15除以9的余數(shù)。分析與解:利用棄九法,將和為9的數(shù)依次劃掉。只剩下7,6,1,5四個數(shù),這時口算一下即可??谒阒?,7,6,5的和是9的倍數(shù),又可劃掉,只剩下1。所以這個多位數(shù)除以9余1。例2 將自然數(shù)1,2,3,?依次無間隔地寫下去組成一個數(shù)***3?如果一直寫到自然數(shù)100,那么所得的數(shù)除以9的余數(shù)是多少? 綠藤星教育(***)小學(xué)奧數(shù)基礎(chǔ)教程分析與解:因為這個數(shù)太大,全部寫出來很麻煩,在使用棄九法時不能逐個劃掉和為9或9的倍數(shù)的數(shù),所以要配合適當(dāng)?shù)姆治觥N覀円呀?jīng)熟知1+2+3+?+9=45,而45是9的倍數(shù),所以每一組1,2,3,?,9都可以劃掉。在1~99這九十九個數(shù)中,個位數(shù)有十組1,2,3,?,9,都可劃掉;十位數(shù)也有十組1,2,3,?,9,也都劃掉。這樣在這個大數(shù)中,除了0以外,只剩下最后的100中的數(shù)字1。所以這個數(shù)除以9余1。在上面的解法中,并沒有計算出這個數(shù)各個數(shù)位上的數(shù)字和,而是利用棄九法分析求解。本題還有其它簡捷的解法。因為一個數(shù)與它的各個數(shù)位上的數(shù)字之和除以9的余數(shù)相同,所以題中這個數(shù)各個數(shù)位上的數(shù)字之和,與1+2+?+100除以9的余數(shù)相同。利用高斯求和法,知此和是5050。因為5050的數(shù)字和為5+0+5+0=10,利用棄九法,棄去一個9余1,故5050除以9余1。因此題中的數(shù)除以9余1。例3 檢驗下面的加法算式是否正確:2638457+3521983+6745785=12907225。分析與解:若干個加數(shù)的九余數(shù)相加,所得和的九余數(shù)應(yīng)當(dāng)?shù)扔谶@些加數(shù)的和的九余數(shù)。如果不等,那么這個加法算式肯定不正確。上式中,三個加數(shù)的九余數(shù)依次為8,4,6,8+4+6的九余數(shù)為0;和的九余數(shù)為1。因為0≠1,所以這個算式不正確。例4 檢驗下面的減法算式是否正確:78321452167953=5664192。分析與解:被減數(shù)的九余數(shù)減去減數(shù)的九余數(shù)(若不夠減,可在被減數(shù)的九余數(shù)上加9,然后再減)應(yīng)當(dāng)?shù)扔诓畹木庞鄶?shù)。如果不等,那么這個減綠藤星教育(***)小學(xué)奧數(shù)基礎(chǔ)教程法計算肯定不正確。上式中被減數(shù)的九余數(shù)是3,減數(shù)的九余數(shù)是6,由(9+3)6=6知,原題等號左邊的九余數(shù)是6。等號右邊的九余數(shù)也是6。因為6=6,所以這個減法運算可能正確。值得注意的是,這里我們用的是“可能正確”。利用棄九法檢驗加法、減法、乘法(見例5)運算的結(jié)果是否正確時,如果等號兩邊的九余數(shù)不相等,那么這個算式肯定不正確;如果等號兩邊的九余數(shù)相等,那么還不能確定算式是否正確,因為九余數(shù)只有0,1,2,?,8九種情況,不同的數(shù)可能有相同的九余數(shù)。所以用棄九法檢驗運算的正確性,只是一種粗略的檢驗。例5 檢驗下面的乘法算式是否正確:468769537=447156412。分析與解:兩個因數(shù)的九余數(shù)相乘,所得的數(shù)的九余數(shù)應(yīng)當(dāng)?shù)扔趦蓚€因數(shù)的乘積的九余數(shù)。如果不等,那么這個乘法計算肯定不正確。上式中,被乘數(shù)的九余數(shù)是4,乘數(shù)的九余數(shù)是6,46=24,24的九余數(shù)是6。乘積的九余數(shù)是7。6≠7,所以這個算式不正確。說明:因為除法是乘法的逆運算,被除數(shù)=除數(shù)商+余數(shù),所以當(dāng)余數(shù)為零時,利用棄九法驗算除法可化為用棄九法去驗算乘法。例如,檢驗383801247。253=1517的正確性,只需檢驗1517253=383801的正確性。練習(xí)51.求下列各數(shù)除以9的余數(shù):(1)7468251;(2)36298745;(3)2657348;(4)6678254193。2.求下列各式除以9的余數(shù):(1)67235+82564;(2)9725647823; 綠藤星教育(***)小學(xué)奧數(shù)基礎(chǔ)教程(3)27836451;(4)3477+265841。3.用棄九法檢驗下列各題計算的正確性:(1)228222=50616;(2)334336=112224;(3)23372428247。6236=3748;(4)12345247。6789=83810105。4.有一個2000位的數(shù)A能被9整除,數(shù)A的各個數(shù)位上的數(shù)字之和是B,數(shù)B的各個數(shù)位上的數(shù)字之和是C,數(shù)C的各個數(shù)位上的數(shù)字之和是D。求D。第6講 數(shù)的整除性(二)這一講主要講能被11整除的數(shù)的特征。一個數(shù)從右邊數(shù)起,第1,3,5,?位稱為奇數(shù)位,第2,4,6,?位稱為偶數(shù)位。也就是說,個位、百位、萬位??是奇數(shù)位,十位、千位、十萬位??是偶數(shù)位。例如9位數(shù)768325419中,奇數(shù)位與偶數(shù)位如下圖所示:能被11整除的數(shù)的特征:一個數(shù)的奇數(shù)位上的數(shù)字之和與偶數(shù)位上的數(shù)字之和的差(大數(shù)減小數(shù))如果能被11整除,那么這個數(shù)就能被11整除。例1 判斷七位數(shù)1839673能否被11整除。分析與解:奇數(shù)位上的數(shù)字之和為1+3+6+3=13,偶數(shù)位上的數(shù)字之和為8+9+7=24,因為2413=11能被11整除,所以1839673能被11整除。根據(jù)能被11整除的數(shù)的特征,也能求出一個數(shù)除以11的余數(shù)。綠藤星教育(***)
點擊復(fù)制文檔內(nèi)容
語文相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1