freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

初中數(shù)學知識點圓總結-資料下載頁

2024-10-27 17:55本頁面
  

【正文】 弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。推論2(△):半圓(或直徑)所對的圓周角是直角;90176。的圓周角所對的弦是直徑??键c七、點和圓的位置關系設⊙O的半徑是r,點P到圓心O的距離為d 則有:dd=r219。點P在⊙O上; dr219。點P在⊙O外??键c八、直線與圓的位置關系直線和圓有三種位置關系,具體如下:(1)相交:直線和圓有兩個公共點時,叫做直線和圓相交,這時直線叫做圓的割線,公共點叫做交點;(2)相切:直線和圓有唯一公共點時,叫做直線和圓相切,這時直線叫做圓的切線,(3)相離:直線和圓沒有公共點時,叫做直線和圓相離。如果⊙O的半徑為r,圓心O到直線l的距離為d,那么:直線l與⊙O相交219。dr; 考點九、圓內(nèi)接四邊形圓的內(nèi)接四邊形定理:圓的內(nèi)接四邊形的對角互補(重要),外角等于它的內(nèi)對角。即:在⊙O中,∵四邊ABCD是內(nèi)接四邊形∴208。C+208。BAD=180176。208。B+208。D=180176。 208。DAE=208。C考點十、切線的性質(zhì)與判定定理切線的判定定理:過半徑外端且垂直于半徑的直線是切線;兩個條件:過半徑外端且垂直半徑,二者缺一不可即:∵MN^OA且MN過半徑OA外端∴MN是⊙O的切線性質(zhì)定理:切線垂直于過切點的半徑(如上圖)(記住理解即可,不會考證明題)考點十一、切線長定理切線長定理:從圓外一點引圓的兩條切線,它們的切線長 相等,這點和圓心的連線平分兩條切線的夾角。即:∵PA、PB是的兩條切線∴PA=PB;PO平分208。BPA(用三角形全等證明)考點十二、弧長和扇形面積弧長公式半徑為R的圓中,n176。的圓心角所對的弧長l的計算公式:扇形面積公式其中n是扇形的圓心角度數(shù),R是扇形的半徑,l是扇形的弧長。圓錐的側面積其中l(wèi)是圓錐的母線長,r是圓錐的地面半徑??键c十三、圓冪定理(一般不會考)相交弦定理:圓內(nèi)兩弦相交,交點分得的兩條線段的乘積相等。即:在⊙O中,∵弦AB、CD相交于點P,∴PAPB=PCPD切割線定理:從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項。即:在⊙O中,∵PA是切線,PB是割線 ∴ PA2=PCPB割線定理:從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等(如上圖)。即:在⊙O中,∵PB、PE是割線∴PCPB=PDPE第五篇:初中圓知識點精華總結初中關于圓的知識是重要內(nèi)容,以下是小編收集的相關知識點,僅供大家閱讀參考!。 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧推論1 ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條?、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧推論2 圓的兩條平行弦所夾的弧相等,是以定點為圓心,定長為半徑的圓 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等。11定理 圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它 的內(nèi)對角12.①直線L和⊙O相交 d②直線L和⊙O相切 d=r③直線L和⊙O相離 dr 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線 圓的切線垂直于經(jīng)過切點的半徑 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點 經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心 從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角 外角等于內(nèi)對角,那么切點一定在連心線上20.①兩圓外離 dR+r ②兩圓外切 d=R+r③.兩圓相交 Rrr)④.兩圓內(nèi)切 d=Rr(Rr)⑤兩圓內(nèi)含dr)[初中圓知識點精華總結]相關文章:
點擊復制文檔內(nèi)容
教學課件相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1