【導(dǎo)讀】{an}為等比數(shù)列,Sn是它的前n項(xiàng)和,若a2?a3=2a1,且a4與2a7的等差中項(xiàng)為,現(xiàn)有一數(shù)列{an}:a1,a2,a3,…,a2021,若其“優(yōu)化和”為2021,則有2021項(xiàng)的數(shù)1,a1,求等比數(shù)列S1,S2,S4的公比;:∵數(shù)列{an}為等差數(shù)列,∴S1=a1,S2=2a1+d,S4=4a1+6d,要使對所有n∈N*恒成立,若5f是bn與a的等差中項(xiàng),則2×5f=bn+an,當(dāng)an≥,即n≤3時(shí),bn隨n的增大而減小,此時(shí)最小值為b3;根據(jù)等比數(shù)列的性質(zhì)可知等于q3,列出方程即可求出q的值,利用即可求出a1的值,先根據(jù)a1=2,a2+a3=13求得d和a5,進(jìn)而根據(jù)等差中項(xiàng)的性質(zhì)知a4+a5+a6=3a5求得答案.。∴b22=1×4=4,又b2=1×q2>0,