【導讀】、幾何平均值的概念。當且僅當時,式中等號成立?我們把叫做a,b的算術平均數(shù),把。從形的角度來看,基本不等式具有特定的。回憶一下你所學的知識中,有哪些地方出。現(xiàn)過“和”與“積”的結構?該結論成立的條件是什么?是否僅僅當a=b時等號才成立?公式兩邊具有何種運算結構?數(shù)的角度:平方和不小于積的2倍。的最大值及相應的x值。時,函數(shù)有最_______值是_______6?并說明什么時候取到等
【總結】溫故知新1、比較兩實數(shù)大小的常用方法△=b2-4ac△0△=0△0)的圖象ax2+bx+c=0(a0)的根ax2+bx+0(a0)的解集ax2+bx+c0(a&
2024-11-17 19:51
【總結】不等式的性質(zhì)課件不等式的性質(zhì)(1)世界上所有的事物不等是絕對的,相等是相對的。過去我們已經(jīng)接觸過許多不等式的問題,本章我們將較系統(tǒng)地研究有關不等式的性質(zhì)、證明、解法和應用.1.判斷兩個實數(shù)大小的充要條件對于任意兩個實數(shù)a、b,在a>b,a=b,a<b三種關系中有且僅有一種成立.判斷兩個實數(shù)大小的充要條件是:
2024-11-17 11:59
2024-11-17 17:33
【總結】知識回顧1.比較兩數(shù)大小的方法;2.不等式的基本性質(zhì)?;仡櫨毩暋?,求證:最大,均為正數(shù),且,,,:設 練習cbdadcbaadcba????1練習2:某市環(huán)保局為增加城市的綠地面積,提出兩個投資方案:方案A為一次性投資500萬元;方案B為第一年投資5萬元,以后每年都比前一年增加
2024-11-17 23:20
【總結】新課標人教版課件系列《高中數(shù)學》必修5《基本不等式-均值不等式》審校:王偉教學目標?推導并掌握兩個正數(shù)的算術平均數(shù)不小于它們的幾何平均數(shù)這個重要定理;利用均值定理求極值。了解均值不等式在證明不等式中的簡單應用。?教學重點:?推導并掌握兩個正數(shù)的算術平均數(shù)不小于它們的幾何平均數(shù)這個重要定
2024-11-09 03:52
【總結】基本不等式請嘗試用四個全等的直角三角形拼成一個“風車”圖案?趙爽弦圖a2+b2≥2ab?該結論成立的條件是什么?若a,b∈R,那么?形的角度?數(shù)的角度a2+b2-2ab=(a-b)2≥0a0,b0
2024-11-17 05:40
【總結】如果a,b∈R,那么a2+b2≥2ab(當且僅當a=b時取“=”)證明:222)(2baabba??????????????0)(0)(22babababa時,當時,當abba222??1.定理適用范圍:Rba?,2.取“=”的條件:ba?定理:
2024-11-18 08:48
【總結】第一篇:不等式證明,均值不等式 1、設a,b?R,求證:ab3(ab)+aba+b23abba2、已知a,b,c是不全相等的正數(shù),求證:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc...
2024-11-03 17:10
【總結】不等式的性質(zhì)素材?一.復習?不等式的基本原理及含義?a-b0ab?a-b=0a=b?a-bab?四大作用:?(1)比較兩個實數(shù)的大小,(2)推導不等式的性質(zhì)
2024-11-18 12:09
【總結】均值不等式的綜合應用22,0,,222abababBabababCDabABCD????????若A=,,,,試比較、、、的大小。CABD???一.均值定理在比較大小中的應用:11,lglg,(lglg),2lg(
【總結】不等式不等式不等式不等式平均值不等式平均值不等式
2025-04-29 00:24
【總結】第3課時均值不等式1.均值不等式基礎知識梳理2.常用的幾個重要不等式(1)a2+b2≥(a,b∈R);(2)ab(a+b2)2(a,b∈R);(3)a2+b22(a+b2
2025-07-24 03:54
2025-08-04 10:01
2025-08-04 09:13
【總結】新課標人教版課件系列《高中數(shù)學》必修5《基本不等式-實際應用》審校:王偉?掌握建立不等式模型解決實際問題.?教學重點:?掌握建立不等式模型解決實際問題教學目標例1.一般情況下,建筑民用住宅時。民用住宅窗戶的總面積應小于該住宅的占地面積,而窗戶的總面積與占地面積的比值越大
2025-01-15 12:36