【正文】
1234N o rm a l Pl o t o f R e s i d u a l sN o r m a l S c o r eResidualR e s i d u a l M o d e l D i a g n o s t i c s28 OneWay ANOVAII Model where Yij is the value of the response variable in the jth trial for the ith factor level or treatment ?. is the overall mean for all observations ?i=?i–?. is the effect of the ith factor level . ?ij is the random error ponent . The hypothesis may now be rephrased: H0 : ??178。 = 0 Ha : ??178。 0 ijiij .Y ??????29 OneWay ANOVAII Model S o u rc e SS DF MS E(M S ) F S t a t i st i cF ac t o r A SSA a– 1 M S AEr r o r SSE a(n – 1 ) M S ET o t al S S T O an – 12A2 n???2?MSEMSAThere is no difference in calculation of the FStatistic between a OneWay ANOVAI Model and a OneWay ANOVAII Model . The difference lies in the conclusion. 30 Example An engineer is interested in winding machine variability in peel strength of a coil. The engineer selects four winding machines at random and determines the peel strength of four samples chosen at random from each winding machine. 31 Example Stat ? ANOVA ? General Linear Model 32 Example ? Session Windows General Linear Model: Peel Strength versus Machine Factor Type Levels Values Machine random 4 1 2 3 4 Analysis of Variance for Peel Str, using Adjusted SS for Tests Source DF Seq SS Adj SS Adj MS F P Machine 3 Error 12 Total 15 33 Example 2 . 01 . 51 . 00 . 50 . 00 . 51 . 01 . 52 . 043210R e si d u a lFrequencyH i st o g r a m o f R e si d u a l s15105054321012345O b se r va t i o n N u m b e rResidualI C h a r t o f R e si d u a l sM e a n = 0U C L = 4 . 1 6 7L C L = 4 . 1 6 7989796959493929121012F i tResidualR e si d u a l s v s. F i t s2101221012N o rm a l Pl o t o f R e s i d u a l sN o r m a l S c o r eResidualR e s i d u a l M o d e l D i a g n o s t i c s34 End of Presentation Rev 1 25 Jun 02 演講完畢,謝謝觀看!