【總結(jié)】利用導(dǎo)數(shù)研究不等式利用導(dǎo)數(shù)證明不等式在區(qū)間上恒成立的基本方法:(1)構(gòu)造函數(shù)(2)根據(jù)函數(shù)的單調(diào)性,或函數(shù)的值域、最值證明注意:(1)適用于不等式兩邊都含有單個(gè)變量時(shí),證明不等式(2)不適用于不等式兩邊分別是兩個(gè)不相關(guān)的變量的情況,如:(如果不存在最值則使用值域的端點(diǎn)值比較)1、教材99頁(yè)B組利用函數(shù)的單調(diào)性,證明下列不等式,并通過函數(shù)圖象直觀
2025-06-17 00:41
【總結(jié)】第一篇:導(dǎo)數(shù)證明不等式構(gòu)造函數(shù)法類別(教師版) 導(dǎo)數(shù)證明不等式構(gòu)造函數(shù)法類別 1、移項(xiàng)法構(gòu)造函數(shù) 1£ln(x+1)£xx+11-1,分析:本題是雙邊不等式,其右邊直接從已知函數(shù)證明,左邊構(gòu)造函...
2025-10-18 22:43
【總結(jié)】Mathwang幾個(gè)經(jīng)典不等式的關(guān)系一幾個(gè)經(jīng)典不等式(1)均值不等式設(shè)是實(shí)數(shù),等號(hào)成立.(2)柯西不等式設(shè)是實(shí)數(shù),則當(dāng)且僅當(dāng)或存在實(shí)數(shù),使得時(shí),等號(hào)成立.(3)排序不等式設(shè),為兩個(gè)數(shù)組,是的任一排列,則當(dāng)且僅當(dāng)或時(shí),等號(hào)成立.(4)切比曉夫不等式對(duì)于兩個(gè)數(shù)組:,,有當(dāng)且僅當(dāng)或時(shí),等號(hào)成立.二相關(guān)證明(1)用排
2025-04-17 08:24
【總結(jié)】第一篇:構(gòu)造函數(shù)證明不等式 構(gòu)造函數(shù)證明不等式 構(gòu)造函數(shù)證明:e的(4n-4)/6n+3)次方 不等式兩邊取自然對(duì)數(shù)(嚴(yán)格遞增)有: ln(2^2/2^2-1)+ln(3^2/3^2-1)+...
2025-10-22 14:46
【總結(jié)】12.掌握利用導(dǎo)數(shù)解決實(shí)際生活中的優(yōu)化問題的方法和步驟,如用料最少、費(fèi)用最低、消耗最省、利潤(rùn)最大、效率最高等..掌握導(dǎo)數(shù)與不等式、幾何等綜合問題的解題方法.????21(0)31
2025-09-19 08:09
【總結(jié)】第一篇:導(dǎo)數(shù)證明不等式的幾個(gè)方法 導(dǎo)數(shù)證明不等式的幾個(gè)方法 1、直接利用題目所給函數(shù)證明(高考大題一般沒有這么直接)已知函數(shù)f(x)=ln(x+1)-x,求證:當(dāng)x-1時(shí),恒有 1-1£ln(...
2025-10-19 01:40
【總結(jié)】集合的運(yùn)算與不等式的解法一.集合的運(yùn)算:1.集合的表示方法:①列舉法②描述法例1:1指出下列集合中的元素是由什么構(gòu)成的A={x|x2-1=0}B={x2-1=0}C={y|y=x2,x∈R}D={(x,y)|y=x2,x∈R}2已知方程組y=-4x
2025-11-01 01:24
【總結(jié)】北京市藍(lán)靛廠中學(xué)張迎戰(zhàn)一、學(xué)習(xí)內(nèi)容:第六章不等式.本章內(nèi)容分為五部分:1、不等式的性質(zhì)2、算術(shù)平均數(shù)和幾何平均數(shù)3、不等式的證明4、不等式的解法5、含絕對(duì)值的不等式二、學(xué)習(xí)要求1、理解不等式的性質(zhì)及其證明2、掌握兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)的定理,并會(huì)簡(jiǎn)單的應(yīng)用
2025-07-21 18:45
【總結(jié)】集合和不等式測(cè)試卷班級(jí)______________姓名____________學(xué)號(hào)______得分____________一、填空題(本大題共48分,每小題4分)1、設(shè)集合A=,集合B=若AB=則AB=2、設(shè)全集,集合,,,則等于3、已知?jiǎng)t的最小值4、設(shè)命題:,命題:對(duì)任何R,都有.命題與中
2025-08-17 06:35
【總結(jié)】第一篇:用導(dǎo)數(shù)證明不等式 用導(dǎo)數(shù)證明不等式 最基本的方法就是將不等式的的一邊移到另一邊,然后將這個(gè)式子令為一個(gè)函數(shù)f(x).對(duì)這個(gè)函數(shù)求導(dǎo),判斷這個(gè)函數(shù)這各個(gè)區(qū)間的單調(diào)性,然后證明其最大值(或者是...
2025-10-22 18:37
【總結(jié)】不等式與不等式組測(cè)試姓名__________學(xué)號(hào)____一、選擇題(每題4分,共32分)1.不等式axb?的解集是bxa?,那么a的取值范圍是???????()A.0a?B.0a?C.0a?D.0a?2.不等式2135xx???的正整數(shù)解的個(gè)數(shù)是??
2025-11-02 04:58
【總結(jié)】第一篇:構(gòu)造函數(shù),妙解不等式 構(gòu) 不等式與函數(shù)是高中數(shù)學(xué)最重要的兩部分內(nèi)容。把作為高中數(shù)學(xué)重要工具的不等式與作為高中數(shù)學(xué)主線的函數(shù)聯(lián)合起來,這樣資源的優(yōu)化配置將使學(xué)習(xí)內(nèi)容在函數(shù)思想的指導(dǎo)下得到重組...
2025-10-22 14:49
【總結(jié)】第一篇:構(gòu)造函數(shù)證明數(shù)列不等式 構(gòu)造函數(shù)證明數(shù)列不等式ln2ln3ln4ln3n5n+6+++L+n3n-(n?N*).:23436 :(1)a32,a+a+L+(n32)a2(n+1)23n...
2025-10-22 14:50
【總結(jié)】第一篇:導(dǎo)數(shù)在不等式證明中的應(yīng)用 龍?jiān)雌诳W(wǎng)://. 導(dǎo)數(shù)在不等式證明中的應(yīng)用 作者:唐力張歡 來源:《考試周刊》2013年第09期 摘要:中學(xué)不等式證明,只能用原始的方法,很多證明需要較高...
2025-10-22 05:20
【總結(jié)】第一篇:構(gòu)造函數(shù)處理不等式問題 構(gòu)造函數(shù)處理不等式問題 函數(shù)與方程,不等式等聯(lián)系比較緊密,如果從方程,不等式等問題中所提供的信息得知其本質(zhì)與函數(shù)有關(guān),該題就可考慮運(yùn)用構(gòu)造函數(shù)的方法求解。構(gòu)造函數(shù),...