【正文】
確的判斷和處理 ,能熟練的對單片機接口部分的電路進行設計。通過設計硬件電路圖,我熟練的掌握了電路設計軟件Protel99SE的應用,能熟練準確的設計出所要求的硬件電路原理圖以及電路板文件圖。掌握了硬件電路圖的一般調(diào)試步驟和調(diào)試方法,各個元器件的應用方式及其應用范圍。通過軟件編程的設計,使我對單片機的編程方法有了很大的提高。在本次畢業(yè)設計中,我進一步加強了自己的動手能力和運用專業(yè)知識的能力,從中學習到如何去思考和解決問題,以及如何靈活地改變方法去實現(xiàn)設計方案;特別是深刻體會到的是軟件和硬件結(jié)合的重要性,以及兩者的聯(lián)系和配合作用。通過畢業(yè)設計,我既鞏固了專業(yè)知識,又學到了在設計過程中的許多流程和該注意的事項,增強了產(chǎn)品開發(fā)的意識,是我在大學時期很好的一次實踐和鍛煉機會。 正式走入社會之前,能夠經(jīng)歷這樣一個學習的過程,對我日后的工作有著特殊的意義,特別是單片機控制等基礎知識的加深以及各種控制方式及其算法的掌握,對我七月份即將投入的工作來說,都是非常需要的,這也是此次畢業(yè)設計的又一大重要目的。致 謝在我的課題和論文完成之際,謹向在我大學四年學習的過程中曾經(jīng)指導過我的老師,關(guān)懷過我的領導,關(guān)心過我的朋友,及所有幫助過我的人們致以崇高的敬意和深深的感謝。首先,我謹懷誠摯的心情向我的指導老師潘清明老師致以崇高的敬意和深深的謝意,潘老師教學、科研等工作繁忙,但他總能盡心盡職、耐心幫助,嚴格要求,對我的課題給予全面的指導、幫助和督促,潘老師淵博的學識,對事業(yè)的執(zhí)著追求精神以及嚴謹?shù)闹螌W精神,使我受益匪淺。其次,應當感謝學校給我們這次設計的機會,并為我們的設計提供了良好的設計環(huán)境以及完備設備,讓我們在幾個月的設計中學到了許多寶貴的知識。在課題的進展過程中吳偉、馮杰等人給了我很大的幫助,他們提出了一些意見和建議,在此我向他們表示深深的感謝。最后 ,在完成這篇論文的過程,我自覺和不自覺的參考了許多文獻,對于這些文獻的作者,雖然在此不可能一一提及,但是對他們每一位表示最誠摯的謝意!參 考 文 獻1. 趙德安.單片機原理與應用.北京:機械工業(yè)出版社.20052. 彭為,黃科.單片機典型系統(tǒng)設計實例精講.電子工業(yè)出版社.20063. 鄧紅,張越.單片機實驗與應用設計教程.冶金工業(yè)出版社.20044. 王治剛.單片機應用技術(shù)與實訓.北京:清華大學出版社.20045. 何立民.MCS51系列單片機應用系統(tǒng)設計.北京:北京航空航天大學出版社.19906. 張友德,趙志英.單片微型機原理、應用與實驗.上海:復旦大學出版社.19917. 李繼燦.微型計算機系統(tǒng)與接口.北京:清華大學出版社.20058. 文艷,譚鴻.Protel 99 SE電子電路設計.北京:機械工業(yè)出版社.20069. 趙文博.新型常用集成電路速查手冊.人民郵電出版社.200510. .器件搜索資料.紅外線遙控原理 11. .器件搜索資料.紅外遙控器軟件解碼及其應用12. .器件搜索資料.AD590數(shù)據(jù)手冊13. .器件搜索資料.模數(shù)轉(zhuǎn)換器數(shù)據(jù)手冊15. .器件搜索資料.DS12887時鐘數(shù)據(jù)手冊附錄A:英文資料DS12887FEATURES● Drop–in replacement for IBM AT puter clock/calendar● Pinpatible with the MC146818B andDS1287● Totally nonvolatile with over 10 years of operation in the absence of power● Self–contained subsystem includes lithium, quartz, and support circuitry● Counts seconds, minutes, hours, days, day of the week, date, month, and year with leap year pensation valid up to 2100● Binary or BCD representation of time, calendar, and alarm● 12– or 24–hour clock with AM and PM in 12–hour mode● Daylight Savings Time option● Selectable between Motorola and Intel bus timing● Multiplex bus for pin efficiency● Interfaced with software as 128 RAM locations– 14 bytes of clock and control registers– 114 bytes of general purpose RAM● Programmable square wave output signal● Bus–patible interrupt signals ( IRQ )● Three interrupts are separately software–maskable and testable– Time–of–day alarm once/second to once/day– Periodic rates from 122 ms to 500 ms– End of clock update cyclePIN ASSIGNMENTDESCRIPTIONThe DS12887 Real Time Clock plus RAM is designed to be a direct replacement for the DS1287. The DS12887 is identical in form, fit, and function to the DS1287, and has an additional 64 bytes of general purpose RAM. Access to this additional RAM space is determined by the logic level presented on AD6 during the address portion of an access cycle. A lithium energy source, quartz crystal, and write– protection circuitry are contained within a 24–pin dual inline package. As such, the DS12887 is a plete subsystem replacing 16 ponents in a typical application. The functions include a nonvolatile time–of–day clock, an alarm, a onehundred–year calendar, programmable interrupt, square wave generator, and 114 bytes of nonvolatile static RAM. The real time clock is distinctive in that time–of–day and memory are maintained even in the absence of power.OPERATIONThe block diagram in Figure 1 shows the pin connections with the major internal functions of the DS12887. The following paragraphs describe the function of each pin.BLOCK DIAGRAM DS12887 Figure 1POWER–DOWN/POWER–UP CONSIDERATIONSThe Real Time Clock function will continue to operate and all of the RAM, time, calendar, and alarm memory locations remain nonvolatile regardless of the level of the VCC input. When VCC is applied to the DS12887 and reaches a level of greater than volts, the device bees accessible after 200 ms, provided that the oscillator is running and the oscillator countdown chain is not in reset (see Register A). This time period allows the system to stabilize after power is applied. When VCC falls below volts, the chip select input is internally forced to an inactive level regardless of the value of CS at the input pin. The DS12887 is, therefore, write–protected. When the DS12887 is in a write–protected state, all inputs are ignored and all outputs are in a high impedance state. When VCC falls below a level of approximately 3 volts, the external VCC supply is switched off and an internal lithium energy source supplies power to the Real Time Clock and the RAM memory.SIGNAL DESCRIPTIONSGND, VCC – DC power is provided to the device on these pins. VCC is the +5 volt input. When 5 volts are applied within normal limits, the device is fully accessible and data can be written and read. When VCC is below volts typical, reads and writes are inhibited. However, the timekeeping function continues unaffected by the lower input voltage. As VCC falls below 3 volts typical, the RAM and timekeeper are switched over to an internal lithium energy source. The timekeeping function maintains an accuracy of 177。1 minute per month at 25176。C regardless of the voltage input on the VCC pin. MOT (Mode Select) The MOT pin offers the flexibility to choose between two bus types. When connected to VCC, Motorola bus timing is selected. When connected to GND or left disconnected, Intel bus timing is selected. The pin has an internal pulldown resistance of approximately 20 kW.SQW (Square Wave Output) The SQW pin can output a signal from one of 13 taps provided by the 15 internal divider stages of the Real Time Clock. The frequency of the SQW pin can be changed by programming Register A as shown in Table 1. The SQW signal can be turned on and off using the SQWE bit in Register B. The SQW signal is not available when VCC is less than volts, typically.PERIODIC INTERRUPT RATE AND SQUAREWAVE OUTPUT FREQUENCY Table 1AD0–AD7 (Multiplexed Bidirectional Address/Data Bus)Multiplexed buses save pi