【正文】
b + ab2的值 . 解 : 由1??+1??=32可得?? + ???? ??=32,又 ∵ a +b= 3, ∴ a b = 2 .∴ a 2 b + a b 2 = a b ( a +b ) = 2 3 = 6 . 課堂考點探究 針對訓(xùn)練 1. [2 0 1 8 濟寧 ] 多項式 4 a a3分解因式的結(jié)果是 ( ) A. a (4 a2) B. a (2 a ) (2 + a ) C. a ( a 2 ) ( a + 2 ) D. a (2 a )2 2. [2 0 1 8 安徽 ] 下列分解因式正確的是 ( ) A. x2+4 x = x ( x +4 ) B. x2+ xy + x = x ( x + y ) C. x ( x y )+ y ( y x ) =( x y )2 D. x2 4 x +4 = ( x + 2 )( x 2) 3. [2 0 1 8 懷化 ] 因式分解 : ab + a c = . B C a(b+c ) 課堂考點探究 探究五 幾何拼圖與乘法公式 【 命題角度 】 利用幾何圖形驗證公式 . 例 7 如圖 3 3 ① 是一個長為 4 a 、寬為 b 的長方形 , 沿圖中虛線用剪刀平均 分成四塊小長方形 , 然后用四塊小長方形拼成一個 “ 回形 ” 正方形 ( 如圖 3 3 ② ) . (1 ) 圖 3 3 ② 中的陰影部分的面積為 。 (2 ) 觀察圖 3 3 ② , 請你寫出 ( a + b )2,( a b )2, ab 之間的等量關(guān)系 : 。 (3 ) 實際上通過計算圖形的面積可以把整式進行因式分解 . 如圖 3 3 ③ , 因式分解 :3 a2+ 4 ab + b2= . 圖 33 (ba)2 ( a + b ) 2 = ( a b ) 2 + 4 ab (3 a +b )( a +b ) 課堂考點探究 針對訓(xùn)練 如圖 3 4, 將一張矩形紙板按圖中虛線裁剪成九塊 , 其中有兩塊是邊長為 m 的大正方形 , 兩塊是邊長為 n 的小正方形 , 五塊是長為m , 寬為 n 的全等小矩形 , 且 m n . ( 以上長度單位 : cm ) (1 ) 觀察圖形 , 可以發(fā)現(xiàn)代數(shù)式 2 m2+ 5 mn + 2 n2可以因式分解為 。 (2 ) 若一塊小矩形的面積為 1 0 cm 2 ,四塊 正方形的面積和為 5 8 cm 2 ,試求圖中所 有裁剪線 ( 虛線部分 ) 長之和 . 圖 34 解 : ( 1 )( m+ 2 n ) (2 m + n ) (2 ) 依題意得 ,2 m2+ 2 n2= 5 8 , mn= 1 0 ,∴ m2+ n2= 2 9 ,∵ ( m +n )2=m2+ 2 m n + n2,∴ ( m +n )2= 29 + 20 = 4 9 ,∵ m +n 0, ∴ m +n = 7, ∴ 2 ( 2 m + n )+ 2 ( 2 n +m ) = 6 m+ 6 n ,∴ 圖中所有裁剪線( 虛線部分 ) 長之和為 4 2 cm .