【總結(jié)】問題:如圖,A、B、C三個村莊合建一所學(xué)校,要求校址P點距離三個村莊都相等.請你幫助確定校址.???ABCABMNC??PMN?CABQ?ABMNP.Q.C?線段垂直平分線上的點和這條線段兩個端點
2024-12-08 05:12
【總結(jié)】§線段的垂直平分線橋東區(qū)區(qū)政府為了方便居民的生活,計劃在三個住宅小區(qū)A、B、C之間修建一個購物中心,試問,該購物中心應(yīng)建于何處,才能使得它到三個小區(qū)的距離相等。ABC實際問題1ABL實際問題2在京石高速公路L(邢臺段)的同側(cè),有兩個化工廠A、B
【總結(jié)】直角三角形直角三角形有哪些性質(zhì)?(1)有一個角是直角;(2)兩個銳角的和為90°(互余);(3)兩直角邊的平方和等于斜邊的平方(勾股定理)。反之,一個三角形滿足什么條件才能是直角三角形呢?溫故知新(1)有一個角是直角的三角形是直角三角形;
2024-12-08 03:43
【總結(jié)】4解直角三角形第一章直角三角形的邊角關(guān)系課堂達(dá)標(biāo)素養(yǎng)提升第一章直角三角形的邊角關(guān)系4解直角三角形課堂達(dá)標(biāo)一、選擇題4解直角三角形1.在Rt△ABC中,∠C=90°,∠A=52°,b=12,則a的值約等于()A.
2025-06-18 00:32
2025-06-12 12:07
【總結(jié)】一個直角三角形房梁如圖所示,其中BC⊥AC,∠BAC=30°,AB=10cm,CB1⊥AB,B1C⊥AC1,垂足分別是B1、C1,那么BC的長是多少?B1C1呢?用心想一想,馬到功成B1C1CBA解:在Rt△ABC中,∠CAB=30°,AB=
2024-11-30 15:00
【總結(jié)】用心想一想,馬到功成小明在證明“等邊對等角”時,通過作等腰三角形底邊的高來證明。過程如下:已知:在△ABC中,AB=AC.求證:∠B=∠C.證明:過A作AD⊥BC,垂足為C,∴∠ADB=∠ADC=90°又∵AB=AC,AD=AD,
2024-11-30 12:48
【總結(jié)】第一章勾股定理2.一定是直角三角形嗎一、學(xué)生知識狀況分析學(xué)生已經(jīng)了勾股定理,并在先前其他內(nèi)容學(xué)習(xí)中已經(jīng)積累了一定的逆向思維、逆向研究的經(jīng)驗,如:已知兩直線平行,有什么樣的結(jié)論?反之,滿足什么條件的兩直線是平行?因而,本課時由勾股定理出發(fā)逆向思考獲得逆命題,學(xué)生應(yīng)該已經(jīng)具備這樣的意識,但具體研究中,可能要用到反證等思路,對現(xiàn)階段學(xué)生而言可能
2024-12-07 21:37
【總結(jié)】2直角三角形第1課時【基礎(chǔ)梳理】一、直角三角形的性質(zhì):直角三角形的兩個銳角_____.:直角三角形兩條直角邊的_______等于斜邊的_____.互余平方和平方二、直角三角形的判定:有兩個角_____的三角形是直角三角形.:(1)文字?jǐn)⑹?如果三角形兩邊的_____
2025-06-14 07:56
2025-06-14 06:54
【總結(jié)】2直角三角形第2課時【基礎(chǔ)梳理】斜邊、直角邊定理:_____和一條_______分別相等的兩個_____三角形全等,簡稱“斜邊、直角邊”定理,記作“___”.斜邊直角邊直角HL:如圖,在Rt△ABC和Rt△DEF中,∵AB=DE(或AC=DF),BC=EF,∴____
2025-06-21 02:29
2025-06-20 08:37
【總結(jié)】4解直角三角形,會運用勾股定理,直角三角形的兩個銳角互余及銳角三角函數(shù)解直角三角形.,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣.ACBcba(1)三邊之間的關(guān)系:a2+b2=_____.(2)銳角之間的關(guān)系:∠A+∠B=_____.(3)邊角之間的關(guān)系:sinA=____,cosA=____,tanA=____.
2025-06-15 02:55
【總結(jié)】4解直角三角形【基礎(chǔ)梳理】由直角三角形中已知的元素,求出_________元素的過程,叫做解直角三角形.所有未知直角三角形中一共有__個元素,_____是已知元素,再知道_______和___________,就可以求出其他的元素.6直角一條邊第三個元素【自我診斷
2025-06-18 03:36
2025-06-20 22:53