【總結】范文范例學習指導二次函數(shù)動點問題典型例題等腰三角形問題1.如圖,在平面直角坐標系中,已知拋物線y=ax2+bx的對稱軸為x=,且經(jīng)過點A(2,1),點P是拋物線上的動點,P的橫坐標為m(0<m<2),過點P作PB⊥x軸,垂足為B,PB交OA于點C,點O關于直線PB的對稱點為D,連接CD,AD,過點A作AE⊥x軸,垂足為E.(1)求拋物線的解析式;(2)填空:①用含m
2025-08-05 01:44
【總結】....二次函數(shù)動點問題典型例題等腰三角形問題1.如圖,在平面直角坐標系中,已知拋物線y=ax2+bx的對稱軸為x=,且經(jīng)過點A(2,1),點P是拋物線上的動點,P的橫坐標為m(0<m<2),過點P作PB⊥x軸,垂足為B,PB交OA于點C,點O關于直線PB的對稱點為D,連接CD,
2025-03-24 06:24
【總結】:一般地,如果是常數(shù),,那么叫做的二次函數(shù).(1)拋物線的頂點是坐標原點,對稱軸是軸.(2)函數(shù)的圖像與的符號關系.①當時拋物線開口向上頂點為其最低點;②當時拋物線開口向下頂點為其最高點.(3)頂點是坐標原點,對稱軸是軸的拋物線的解析式形式為.的圖像是對稱軸平行于(包括重合)軸的拋物線.:的形式,其中.,可分為以下幾種形式:①;②;③;④;⑤.:
2025-05-31 02:56
【總結】......二次函數(shù)知識點總結及相關典型題目第一部分基礎知識:一般地,如果是常數(shù),,那么叫做的二次函數(shù).(1)拋物線的頂點是坐標原點,對稱軸是軸.(2)函數(shù)的圖像與的符號關系.①當時拋物線開
2025-06-23 13:56
【總結】二次函數(shù)知識點總結及相關典型題目第一部分基礎知識:一般地,如果是常數(shù),,那么叫做的二次函數(shù).(1)拋物線的頂點是坐標原點,對稱軸是軸.(2)函數(shù)的圖像與的符號關系.①當時拋物線開口向上頂點為其最低點;②當時拋物線開口向下頂點為其最高點.(3)頂點是坐標原點,對稱軸是軸的拋物線的解析式形式為.的圖像是對稱軸平行于(包括重合)軸的拋物線.:的形
2025-04-04 04:25
【總結】龍文學校個性化輔導資料牟曉彬TEL:63977061第1頁共59頁二次函數(shù)知識點總結及相關典型題目參考答案:2C3D4D2482,484EFxEFxyxx?????????5,4
2024-10-27 13:41
【總結】二次函數(shù)知識點總結一、二次函數(shù)的定義1.二次函數(shù)的概念:一般地,形如(是常數(shù),)的函數(shù),叫做二次函數(shù)。這里需要強調(diào):和一元二次方程類似,二次項系數(shù),而可以為零.2.二次函數(shù)的結構特征:⑴等號左邊是函數(shù),右邊是關于自變量的二次式,的最高次數(shù)是2.⑵是常數(shù),是二次項系數(shù),是一次項系數(shù),是常數(shù)項.二、二次函數(shù)的基本形式1.的性質(zhì):
2025-06-24 14:38
【總結】二次函數(shù)命題點年份各地命題形式考查頻次2015考查方向二次函數(shù)的圖象和性質(zhì)2014云南(T12填)填空1個近3年考查2次,主要考查對圖象的認識與性質(zhì)的理解,預計2015年考查的可能性較大.2013昭通(T9選)選擇1個確定二次函數(shù)的解析式2014昆明(T23解),曲靖(T24解)解答2個高頻考點:近3年考查12次
2025-04-07 02:41
【總結】一次函數(shù)知識點一次函數(shù)一元一次方程一元一次不等式二元一次方程再認識變化的世界函數(shù)建立數(shù)學模型圖象性質(zhì)應用一次函數(shù)知識網(wǎng)絡圖考點一:變量、常量及函數(shù)定義1、變量:在一個變化過程中可以取不同數(shù)值的量。常量:在一個變化過程中只能取同一數(shù)值的量。2、函數(shù):一般的,在一個變化過程中,如果有
2025-04-16 12:46
【總結】二次函數(shù)最大面積例1如圖所示,等邊△ABC中,BC=10cm,點,分別從B,A同時出發(fā),以1cm/s的速度沿線段BA,AC移動,當移動時間t為何值時,△的面積最大?并求出最大面積。A
【總結】-1-二次函數(shù)各知識點、考點、典型例題及對應練習(超全)【典型例題】題型1二次函數(shù)的概念例1(基礎).二次函數(shù)2365yxx????的圖像的頂點坐標是()A.(-1,8)B.(1,8)C(-1,2)D(1,-4)點撥:本題主要考察二次函數(shù)的頂點坐標公式
2024-11-08 13:26
【總結】1二次函數(shù)知識點總結及相關典型題目第一部分二次函數(shù)基礎知識?相關概念及定義?二次函數(shù)的概念:一般地,形如2yaxbxc???(abc,,是常數(shù),0a?)的函數(shù),叫做二次函數(shù)。這里需要強調(diào):和一元二次方程類似,二次項系數(shù)0a?,而bc,可以為零.二次函數(shù)的定義域是全體實數(shù).?二次函數(shù)2yaxbx
2024-10-19 10:07
【總結】(?。┲?、函數(shù)單調(diào)性的定義設函數(shù)y=f(x)的定義域為I:如果對于屬于定義域I內(nèi)某個區(qū)間D上的任意兩個自變量的值,(1)當時,都有,那么就說函數(shù)f(x)在區(qū)間D上是增函數(shù):(2)當時,都有,那么就說函數(shù)f(x)在區(qū)間D上是減函數(shù)。注意:具有三個特征:①屬于同一區(qū)間②任
2025-06-18 22:01
【總結】二次函數(shù)一、定義:一般地,如果是常數(shù),,那么叫做的二次函數(shù).例:已知關于x的函數(shù))當a,b,c滿足什么條件時(1)是一次函數(shù)(2)是正比例函數(shù)(3)是二次函數(shù)yxO二、二次函數(shù)是常數(shù),的性質(zhì)(1)①當時拋物線開口向上頂點為其最低點;②當時拋物線開口向下頂點為其最高點.③||越大,開口越小。(2)頂點是,對稱軸是直線(3)①
【總結】二次函數(shù)知識點歸納及提高訓練:一般地,如果是常數(shù),,那么叫做的二次函數(shù).(1)拋物線的頂點是坐標原點,對稱軸是軸.(2)函數(shù)的圖像與的符號關系.①當時拋物線開口向上頂點為其最低點;②當時拋物線開口向下頂點為其最高點的圖像是對稱軸平行于(包括重合)軸的拋物線.:的形式,其中.,可分為以下幾種形式:①;②;③;④;⑤.:開口方向、對稱軸、頂點.①決定拋物線的