【總結(jié)】第2課時 勾股定理的應(yīng)用知識點1知識點2勾股定理的實際應(yīng)用樹,一棵高10?m,另一棵高4?m,兩樹相距8?鳥從一棵樹的樹梢飛到另一棵樹的樹梢,問小鳥至少飛行(??B??)?m?m?m?m
2025-06-15 12:01
【總結(jié)】 勾股定理的逆定理:如果三角形的三邊長a,b,c滿足 ,那么這個三角形是直角三角形.?題的題設(shè)、結(jié)論正好相反,那么這樣的兩個命題叫做 .如果把其中一個叫做 ,那么另一個叫做它的 .?,如果一個定理的逆命題經(jīng)過證明是正確的,那么它也是一個定理,稱這兩個定理
2025-06-17 20:59
【總結(jié)】第2課時 勾股定理的實際應(yīng)用實際生活中的與直角三角形有關(guān)的許多問題.如長度、高度、距離、面積、體積等問題往往需要用勾股定理來解決.強量得家里新購置的彩電熒光屏的長為58cm,寬為46cm,則這臺電視機的尺寸(即電視機屏幕對角線的長度,實際測量的誤差可不計)是( )(約2
2025-06-14 05:26
2025-06-18 12:26
【總結(jié)】勾股定理的逆定理一、選擇題(每小題4分,共12分),每個小正方形的邊長為1,A,B,C是小正方形的頂點,則∠ABC的度數(shù)為()°°°°,在由單位正方形組成的網(wǎng)格圖中標有AB,CD,EF,GH四條線段,其中能構(gòu)成直角三角形三邊的線段是(
2025-11-06 10:32
【總結(jié)】勾股定理的逆定理勾股定理的逆定理知識目標目標突破目標一直角三角形的判別方法勾股定理的逆定理例1判斷由線段a,b,c組成的三角形是否是直角三角形.(1)a=5,b=13,c=12;(2)a=4,b=5,c=6;(3)
2025-06-12 03:25
【總結(jié)】謝謝觀看Thankyouforwatching!
2025-06-17 06:48
【總結(jié)】學(xué)練考數(shù)學(xué)八年級下冊R感謝您使用本課件,歡迎您提出寶貴意見!
2025-06-20 12:02
【總結(jié)】第14章勾股定理微專題6勾股定理及其逆定理的綜合應(yīng)用專題解讀勾股定理及其逆定理揭示了直角三角形的三邊的數(shù)量關(guān)系,在實際生活中應(yīng)用廣泛,在解題時注意將實際問題轉(zhuǎn)化為直角三角形問題,利用勾股定理解決.專題訓(xùn)練類型1勾股定理與格點多邊形1.如圖,在邊長為1的小正方形組成的網(wǎng)格中,△ABC的三個頂點均在格點上,請按要
2025-06-17 07:30
【總結(jié)】第十七章勾股定理學(xué)練考數(shù)學(xué)八年級下冊R勾股定理的逆定理第1課時勾股定理的逆定理
2025-06-12 14:19
2025-06-12 12:34
【總結(jié)】小專題(三)利用勾股定理及其逆定理解決最短路徑問題平面(或曲面)上的最短路線問題是數(shù)學(xué)中常見的一種最值問題,勾股定理及其逆定理是解決這類問題的一大利器.求最短路線問題,首先要把實際問題轉(zhuǎn)化成含有直角三角形的數(shù)學(xué)模型,再根據(jù)“兩點之間,線段最短”的數(shù)學(xué)事實通過勾股定理(或逆定理)得出最短路線.如果求曲面上的最短路線,
2025-06-17 16:57
2025-06-19 06:52
2025-06-15 22:34