freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

高考最有可能考的50題-資料下載頁

2025-06-07 23:52本頁面
  

【正文】 處理能力和應(yīng)用意識(shí).43.【參考答案】解:(Ⅰ)證明:四邊形是平行四邊形,平面,又,平面. (Ⅱ)設(shè)的中點(diǎn)為,在平面內(nèi)作于,則平行且等于,連接,則四邊形為平行四邊形,∥,平面,平面,∥平面,為中點(diǎn)時(shí),∥平面.設(shè)為的中點(diǎn),連結(jié),則平行且等于,平面,平面,.【點(diǎn)評(píng)】:空間幾何體的解答題一般以柱體或錐體為背景,考查線面、面面關(guān)系,體積等。44.【參考答案】 解:(1)由,解得,故橢圓的標(biāo)準(zhǔn)方程為.         (2)設(shè),則由,得,即,∵點(diǎn)M,N在橢圓上,∴ 設(shè)分別為直線的斜率,由題意知,∴,    故 ,即(定值)          ?。?)由(2)知點(diǎn)是橢圓上的點(diǎn),∵,∴該橢圓的左右焦點(diǎn)滿足為定值,因此存在兩個(gè)定點(diǎn),使得為定值?!  ?5.【參考答案】 解:(1)設(shè)拋物線的標(biāo)準(zhǔn)方程為, 由題意,得,即. 所以拋物線的標(biāo)準(zhǔn)方程為.……3分(2)設(shè),且,. 由(),得,所以. 所以切線的方程為,即.整理,得, ①且C點(diǎn)坐標(biāo)為.同理得切線的方程為,②且D點(diǎn)坐標(biāo)為.由①②消去,得. 又直線的方程為,③ 直線的方程為. ④ 由③④消去,得.所以,即軸. (3)由題意,設(shè),代入(1)中的①②,得,. 所以都滿足方程. 所以直線的方程為. 故直線過定點(diǎn).【點(diǎn)評(píng)】:新課標(biāo)高考中,解析幾何大題多考橢圓和拋物線,常和向量等結(jié)合考查其軌跡、標(biāo)準(zhǔn)方程、簡單的幾何性質(zhì)等基礎(chǔ)知識(shí),同時(shí)考查了學(xué)生運(yùn)算求解、推理論證的能力.46.【參考答案】解析: (1) ,當(dāng),單調(diào)遞減,當(dāng),單調(diào)遞增. ① ,t無解;② ,即時(shí),;③ ,即時(shí),在上單調(diào)遞增,;所以. (2) ,則, 設(shè),則,,單調(diào)遞減,,單調(diào)遞增,所以.   因?yàn)閷?duì)一切,恒成立,所以.   (3) 問題等價(jià)于證明,由⑴可知的最小值是,當(dāng)且僅當(dāng)時(shí)取到.                  設(shè),則,易得,當(dāng)且僅當(dāng)時(shí)取到,從而對(duì)一切,都有成立. 47.【參考答案】解:(1)時(shí)則 令有:;令故的單增區(qū)間為;單減區(qū)間為. (2)構(gòu)造,即則.① 當(dāng)時(shí),成立,則時(shí),即在上單增,令:,故 ②時(shí) , 令;令 即在上單減;在上單增故,舍去綜上所述,實(shí)數(shù)a的取值范圍 【點(diǎn)評(píng)】:導(dǎo)數(shù)題常放在高考解答題的最后一題,主要考查導(dǎo)數(shù)的幾何意義、導(dǎo)數(shù)的求法以及導(dǎo)數(shù)在研究函數(shù)的性質(zhì)和證明不等式等方面的應(yīng)用,考查等價(jià)轉(zhuǎn)化、分類討論等數(shù)學(xué)思想方法以及分析問題與解決問題的能力.48.【參考答案】(1)證明:連接,是的切線,.又 (2)是的切線,是的割線,..又中由相交弦定理,得,.是的切線,是的割線, 【點(diǎn)評(píng)】:幾何證明選講主要考查圓內(nèi)接四邊行、圓的切線性質(zhì)、圓周角與弦切角等性質(zhì)、相似三角形、弧與弦的關(guān)系、試題分兩問,難度不大,圖形比較簡單,可以考作輔助線,但非常簡單。49.【參考答案】解.(I)的普通方程為的普通方程為聯(lián)立方程組解得與的交點(diǎn)為,則. (II)的參數(shù)方程為為參數(shù)).故點(diǎn)的坐標(biāo)是,從而點(diǎn)到直線的距離是 ,由此當(dāng)時(shí),取得最小值,且最小值為.【點(diǎn)評(píng)】:坐標(biāo)系與參數(shù)方程就坐標(biāo)系而言, 主要考查極坐標(biāo)系與直角坐標(biāo)系的坐標(biāo)和方程的互化,在 極坐標(biāo)系下的點(diǎn)與線,線與圓的位置關(guān)系;就參數(shù)方程而言,主要考查參數(shù)方程與普通方程的互化,圓、橢圓、直線參數(shù)的幾何意義,直線的參數(shù)方程在直線與圓錐曲線的位置關(guān)系中,弦長、割線長等的計(jì)算問題。坐標(biāo)系與參數(shù)方程輪換考或結(jié)合起來考。50.【參考答案】解:(1)由題意,令解得或,函數(shù)的定義域?yàn)?2) ,,即.由題意,不等式的解集是, 則在上恒成立. 而,故. 【點(diǎn)評(píng)】:不等式選講近三年主要考查的是解絕對(duì)值不等式,但隨著參與新課標(biāo)全國卷的省份的增加,也會(huì)考查比較法、綜合法和分析法等不等式方法,但柯西不等式、排序不等式等還不會(huì)在新課標(biāo)全國卷里考。[來源:學(xué)科網(wǎng)]
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)教案相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1