【正文】
行反風(fēng),反風(fēng)時(shí),風(fēng)門的狀態(tài)保持不變。此程序中也設(shè)定了一定電氣閉鎖和機(jī)械閉鎖。在這里我以1風(fēng)機(jī)的反風(fēng)舉例。對旋式軸流式通風(fēng)機(jī)對旋軸流式主通風(fēng)機(jī)的葉輪是由兩個同等容量的電機(jī)來拖動的,兩個電機(jī)需相反方向旋轉(zhuǎn),為防止電機(jī)的同時(shí)啟動會給電網(wǎng)帶來太大的沖擊,我設(shè)定在1風(fēng)機(jī)電機(jī)啟動后的30S后啟動2風(fēng)機(jī)電機(jī)。為防止兩個電機(jī)同向旋轉(zhuǎn),兩個電機(jī)之間我分別設(shè)計(jì)了電氣閉鎖(即2風(fēng)機(jī)電機(jī)的反轉(zhuǎn)輸出的常閉觸點(diǎn)串到1風(fēng)機(jī)的反轉(zhuǎn)電路中)和機(jī)械閉鎖(2風(fēng)機(jī)電機(jī)的反轉(zhuǎn)啟動按鈕常閉觸點(diǎn)串到1風(fēng)機(jī)電機(jī)的反轉(zhuǎn)電路中),另外對于同一臺電機(jī)我也設(shè)計(jì)了電氣閉鎖和機(jī)械閉鎖。 (8)風(fēng)機(jī)的手動控制程序:先把控制方式切換到手動控制方式,然后在控制操作面板上,操作對應(yīng)得按鈕,即可實(shí)現(xiàn)相對應(yīng)的功能。由于2風(fēng)機(jī)的控制功能相同。這里我僅列出1風(fēng)機(jī)的手動控制程序。主通風(fēng)機(jī)在正常情況下的操作順序:l 啟動:接到啟動主通風(fēng)機(jī)的命令→檢查各風(fēng)門是否出于正確狀態(tài)→操作啟動設(shè)備→啟動風(fēng)機(jī)電機(jī)→完成電機(jī)啟動→緩緩打開通往井下的風(fēng)門使各風(fēng)門處于正常通風(fēng)狀態(tài)→完成風(fēng)機(jī)啟動→報(bào)告礦調(diào)度或有關(guān)部門。l 停機(jī):接到停機(jī)命令→斷電停機(jī)→風(fēng)機(jī)電機(jī)停轉(zhuǎn)后,按規(guī)定操作有關(guān)風(fēng)門→報(bào)告礦調(diào)度或有關(guān)部門。l 軸流式通風(fēng)機(jī)應(yīng)開風(fēng)門啟動,應(yīng)將通往井下的風(fēng)門關(guān)閉,同時(shí)將通往井下的風(fēng)門打開,并要支撐牢靠,以防吸地面風(fēng)時(shí)自動吸合關(guān)閉,啟動后,打開通往井下的風(fēng)門,同時(shí)關(guān)閉地面進(jìn)風(fēng)門。l 停機(jī)后根據(jù)停機(jī)命令決定是否用開動備用通風(fēng)機(jī),如需開動備用風(fēng)機(jī)則按上述正常操作進(jìn)行,不開備用風(fēng)機(jī),應(yīng)打開有關(guān)風(fēng)門、井口防爆門,以充分利用自然通風(fēng)。l 反風(fēng):停止當(dāng)前通風(fēng)機(jī)的運(yùn)轉(zhuǎn),用地鎖將防爆門固定牢固,各風(fēng)門保持原狀不變,待電機(jī)停穩(wěn)后,用換向裝置反轉(zhuǎn)啟動電動機(jī)。 (9)風(fēng)機(jī)的自動控制程序:這里我只設(shè)計(jì)1風(fēng)機(jī)的控制程序,2風(fēng)機(jī)的控制程序與此類同。在無人操作的情況下,若是風(fēng)機(jī)運(yùn)行出現(xiàn)故障,能自動啟動另外一臺風(fēng)機(jī),而不會由于停風(fēng)影響煤礦的正常生產(chǎn)。(20)報(bào)警程序:當(dāng)實(shí)際值超過或低于某個限定值時(shí),會有報(bào)警,引起工作人員的注意,實(shí)施一定的操作,這里我僅做出風(fēng)機(jī)靜壓和全壓的報(bào)警程序的設(shè)計(jì)。5 結(jié)論主通風(fēng)機(jī)是保證礦井安全生產(chǎn)的主要核心設(shè)備之一,其工作狀況對礦井的企業(yè)運(yùn)營效益有很大的影響,因此對主通風(fēng)機(jī)的監(jiān)控有很大的必要性。本系統(tǒng)選用具有優(yōu)良性能的傳感器、變流器等檢測裝置,對通風(fēng)機(jī)及相關(guān)配套設(shè)備進(jìn)行實(shí)時(shí)狀態(tài)監(jiān)測;以西門子S7300PLC為監(jiān)控核心,對通風(fēng)系統(tǒng)進(jìn)行了在線監(jiān)控,實(shí)現(xiàn)手動和自動控制,實(shí)現(xiàn)了正常通風(fēng)與反風(fēng)的控制,提高了主通風(fēng)機(jī)設(shè)備的自動化管理水平,有力保證了主通風(fēng)機(jī)設(shè)備的經(jīng)濟(jì)、可靠運(yùn)行,為設(shè)備的的管理和維修提供了可靠的科學(xué)依據(jù),大大減少了煤礦事故的發(fā)生,提高煤礦的安全水平。由于是初次接觸煤礦的通風(fēng)系統(tǒng)的相關(guān)知識,對現(xiàn)場的具體情況了解甚微,所以設(shè)計(jì)中的很多細(xì)節(jié)部分考慮不周,在結(jié)構(gòu)上也有不完善的地方,我在以后的工作學(xué)習(xí)中會繼續(xù)努力的。在本次設(shè)計(jì)過程中,我學(xué)習(xí)到了很多知識,掌握了西門子S7—300 PLC的相關(guān)知識,為我以后的工作打下了很好的基礎(chǔ)。參考文獻(xiàn):[1] (提高版).北京:電子工業(yè)出版社,2005[2] 廖昌初.S7300/400 PLC 應(yīng)用技術(shù)(第2版).北京:機(jī)械工業(yè)出版社,2008[3] 吳士東.主扇風(fēng)機(jī)無人值守自動化監(jiān)控系統(tǒng)設(shè)計(jì)[碩士論文].山東科技大學(xué),2006[4] 李平,李濤.風(fēng)機(jī)在線監(jiān)測系統(tǒng)的設(shè)計(jì)及應(yīng)用.煤礦機(jī)電.20031,151[5] 陳士偉.煤礦主通風(fēng)機(jī)在線監(jiān)測與故障診斷系統(tǒng)[學(xué)位論文].中國礦業(yè)大學(xué),2005[6] 范天吉. :吉林電子出版社,2003,9[7] (第一卷).吉林:吉林電子出版社,2004,7 [8] (修訂本)》第三分冊《煤礦固定設(shè)備電力拖動》. 北京:煤炭工業(yè)出版社,1997[9] :煤炭工業(yè)出版社,2003[10] :機(jī)械工業(yè)出版社,2004,7 [11] (美)(第五版).北京:電子工業(yè)出版社,2005,8[12] :東南大學(xué)出版社,2003,6[13] 孫海維. :機(jī)械工業(yè)出版社,2005 [14] 袁紅兵 吳波 ,1[15] 張儀哲 許寧 趙亮. ,9[16] 顧文卿 . 2006版新編煤礦機(jī)電設(shè)備選型設(shè)計(jì)及故障診斷實(shí)用手冊(第四卷).北京:中國煤炭工業(yè)出版社,2006[17] 于文景 李富群 .現(xiàn)代化煤礦機(jī)械設(shè)備安裝調(diào)試、運(yùn)行檢測、故障診斷、維修保養(yǎng)與標(biāo)準(zhǔn)規(guī)范全書(第三冊).北京: 當(dāng)代中國音像出版社,2003[18] 何文輝 劉小輝.一種風(fēng)機(jī)在線監(jiān)控系統(tǒng)的開發(fā).風(fēng)機(jī)技術(shù).2002年,第2 期[19] 朱浩波.PLC在機(jī)電故障診斷中的應(yīng)用.哈爾濱理工大學(xué)學(xué)報(bào).2001年,第4期[20] 李智勇 文元雄.風(fēng)機(jī)振動監(jiān)測系統(tǒng).風(fēng)機(jī)技術(shù).2002年,6[21] ADE7758 Product Date Sheet[R].Analog Decvice ,Inc.2004[22] 李衛(wèi)軍.大型風(fēng)機(jī)的在線監(jiān)測.中國設(shè)備工程.2003年,10[23] 朱海濤.煤礦主通風(fēng)機(jī)監(jiān)控系統(tǒng)應(yīng)用研究[碩士學(xué)位論文].中國礦業(yè)大學(xué),2007[24] Loannides, maria G. Design and implementation of PLCbased monitoring control system for induction motor. IEEE Transactions on Energy Conversion, 2004, 9[25] Priba Paul,Pameticky Terry. PLC application for large motor monitoring. 2000, 8 [26] Xu Guozheng, Zhou jinghui. Automatic substation monitoring system based on PLC. Qinghua Daxue Xuebao ,1998,3[27] 王華,韓永志. 可編程序控制器在運(yùn)煤自動化中的應(yīng)用. 北京: 中國電力出版社,2003[28] Hans with STEP7 in LAD and FBD [M] Erlangen and Munich:Publicis MCD Corporate Publishing,2001[29] :機(jī)械工業(yè)出版社,2007[30] [31] 李世華,:[32] :清華大學(xué)出版社,20036 翻譯部分英文原文Design and Implementation of PLCBased Monitoring Control System for Induction MotorMaria G. Ioannides, Senior Member, IEEEAbstract—The implementation of a monitoring and control system for the induction motor based on programmable logic controller(PLC) technology is described. Also, the implementation of the hardware and software for speed control and protection with the results obtained from tests on induction motor performance is provided. The PLC correlates the operational parameters to the speed requested by the user and monitors the system during normal operation and under trip conditions. Tests of the induction motor system driven by inverter and controlled by PLC prove a higher accuracy in speed regulation as pared to a conventional V f control system. The efficiency of PLC control is increased at high speeds up to 95% of the synchronous speed. Thus, PLC proves themselves as a very versatile and effective tool in industrial control of electric drives.Index Terms—Computercontrolled systems, puterized monitoring, electric drives, induction motors, motion control, programmable logic controllers (PLCs), variablefrequency drives, voltage control.I. INTRODUCTIONSince technology for motion control of electric drives became available, the use of programmable logic controllers (PLCs) with power electronics in electric machines applications has been introduced in the manufacturing automation [1], [2].This use offers advantages such as lower voltage drop when turned on and the ability to control motors and other equipment with a virtually unity power factor [3]. Many factories use PLCs in automation processes to diminish production cost and to increase quality and reliability [4]–[9]. Other applications include machine tools with improved precision puterized numerical control (CNC) due to the use of PLCs [10].To obtain accurate industrial electric drive systems, it is necessary to use PLCs interfaced with power converters, personal puters, and other electric equipment [11]–[13]. Nevertheless, this makes the equipment more sophisticated, plex, and expensive [14], [15].Few papers were published concerning dc machines controlled by PLCs. They report both the implementation of the fuzzy method for speed control of a dc motor/generator set using a PLC to change the armature voltage [16], and the incorporation of an adaptive controller based on the selftuning regulator technology into an existing industrial PLC [17]. Also, other types of machines were interfaced with PLCs. Thereby, an industrial PLC was used for controlling stepper motors in a fiveaxis rotor position, direction and speed, reducing the number of circuit ponents, lowering the cost, and enhancing reliability [18]. For switched reluctance motors as a possible alternative to adjustable speed ac and dc drives, a single chip logic controller for controlling torque and speed uses a PLC to implement the digital logic coupled with a power controller [19]. Other reported application concerns a linear induction motor