【正文】
oAPO樣品焙燒前后的紫外漫反射圖.圖中 53 580和 650nm附近出現(xiàn)的三個吸收帶是具有 d7結(jié)構(gòu)的Co(II)形成四面體配位眾 —d電子躍遷的特征吸收帶,表明 Co進入分子篩骨架。 在可見光區(qū) 270、 230和 220nm附近 出現(xiàn)的吸收帶可歸屬于 O—M電子轉(zhuǎn)移吸收帶,其強度隨著 Co含量的升高而增加。熔燒后, Co/ A1比為 ,樣品的這些吸收帶強度減弱,而 Co/ A1為 .樣品的該吸收帶強度卻賂有增加,這些譜帶寬化表明該中孔材料幾乎無固定孔墻結(jié)構(gòu). 另外, Si的引入也影響著 Co的骨架取代,若在合成 CoAPO樣品時添加正硅酸乙酯 TEOS,制得樣品的圖如圖 6所示,對于549—635nm范圍的吸收帶,少量 Si的引入 (Si/ A1= 0。 10),該吸收帶強度增加,而大量 Si的加入 (Si/ A1= 0。 20)則吸收帶強度減弱。因而,少量 Si的引入將有利于 Co進入磷酸鋁分子篩骨架。 30 4. Characterization and catalytic properties of tincontaining mesoporous silicas prepared by different methods 31 Fig. 6 shows the UV–vis diffuse reflectance spectra of the different tincontaining MCM41. For all G samples, the spectrum is mainly posed of a very intense absorption at 220 nm, in agreement with a tetrahedrally coordinated tin. For high tin loadings, a small shoulder, characteristic of hexacoordinated tin, can be observed near 260 nm. In contrast, the samples prepared by the other ways display always nonnegligible absorptions near 260–280 nm which can be ascribed to the presence of hexacoordinated mono and/or polymeric tin. 32 33