【總結(jié)】三個正數(shù)的算術(shù)3幾何平均不等式?,,?,有怎樣的不等式成立會個正數(shù)對于例如式能否推廣呢這個不等關(guān)系算數(shù)平均與幾何平均的的數(shù)給出了兩個正基本不等式思考3.,,,,,:,,,,,等號成立時當(dāng)且僅當(dāng)那么如果可能有個正數(shù)對于們猜想我式形的等式不本基比類cbaabccbaRcbacba???????
2025-04-24 09:36
【總結(jié)】思考:該結(jié)論可推廣到三個正數(shù),四個正數(shù),…,甚至n個正數(shù)嗎?002,,..abababab?????若則等號當(dāng)且僅當(dāng)時成立2,,,,,.ababababab?
2025-07-24 07:30
【總結(jié)】導(dǎo)數(shù)大題中不等式的證明1.使用前面結(jié)論求證(主要),有三種:,。1、設(shè)函數(shù)(為自然對數(shù)的底數(shù)),().(1)證明:;(2)當(dāng)時,比較與的大小,并說明理由;(3)證明:().2、已知函數(shù).(1)求在上的最大值;(2)若直線為曲線的切線,求實數(shù)的值;(3)當(dāng)時,設(shè),且,若不等式恒成立,求實數(shù)的最小值.
2025-03-25 00:40
2025-07-24 16:57
2025-07-24 14:49
2025-07-23 12:42
2025-07-24 16:53
2025-07-24 11:40
【總結(jié)】不等式公式匯總一不等式的證明證明不等式選擇方法的程序:①做差:證明不等式首選不等式,做差的本質(zhì)是因式分解,能否使用做差法取決于做差后能否因式分解;②作比:通過構(gòu)造同底或同指數(shù)合并作比結(jié)果,再利用指對數(shù)圖像判斷大于小于1;③用公式:構(gòu)造公式形式;等價變形:左右兩邊n次方;平方平均≥算術(shù)平均≥幾何平均≥調(diào)和平均(a、b為正數(shù)):(當(dāng)a=b時取等),,
2025-04-17 13:09
【總結(jié)】第一部分:三個重要的放縮一、放縮后轉(zhuǎn)化為等比數(shù)列。例1.滿足:(1)用數(shù)學(xué)歸納法證明:(2),求證:二、放縮后裂項迭加例2.?dāng)?shù)列,,其前項和為求證:(1)用表示出(2)若在上恒成立,求的取值范圍(3)證明:
2025-06-16 12:41
【總結(jié)】Mathwang幾個經(jīng)典不等式的關(guān)系一幾個經(jīng)典不等式(1)均值不等式設(shè)是實數(shù),等號成立.(2)柯西不等式設(shè)是實數(shù),則當(dāng)且僅當(dāng)或存在實數(shù),使得時,等號成立.(3)排序不等式設(shè),為兩個數(shù)組,是的任一排列,則當(dāng)且僅當(dāng)或時,等號成立.(4)切比曉夫不等式對于兩個數(shù)組:,,有當(dāng)且僅當(dāng)或時,等號成立.二相關(guān)證明(1)用排
2025-04-17 08:24
2025-07-22 04:55
2025-07-24 16:41
2025-07-24 16:08
2025-07-23 15:42