freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

超級(jí)難72道數(shù)學(xué)奧數(shù)邏輯題-資料下載頁(yè)

2025-04-07 02:57本頁(yè)面
  

【正文】 ?!眴?wèn)題是中間那人也說(shuō)不知道,所以最前面那個(gè)人知道自己戴白帽子的假定是錯(cuò)的,所以他推斷出自己戴了黑帽子。  我們把這個(gè)問(wèn)題推廣成如下的形式:  “有若干種顏色的帽子,每種若干頂。假設(shè)有若干個(gè)人從前到后站成一排,給他們每個(gè)人頭上戴一頂帽子。每個(gè)人都看不見(jiàn)自己戴的帽子的顏色,而且每個(gè)人都看得見(jiàn)在他前面所有人頭上帽子的顏色,卻看不見(jiàn)在他后面任何人頭上帽子的顏色?,F(xiàn)在從最后那個(gè)人開(kāi)始,問(wèn)他是不是知道自己戴的帽子顏色,如果他回答說(shuō)不知道,就繼續(xù)問(wèn)他前面那個(gè)人。一直往前問(wèn),那么一定有一個(gè)人知道自己所戴的帽子顏色?!薄 ‘?dāng)然要假設(shè)一些條件:1)首先,帽子的總數(shù)一定要大于人數(shù),否則帽子都不夠戴。2)“有若干種顏色的帽子,每種若干頂,有若干人”這個(gè)信息是隊(duì)列中所有人都事先知道的,而且所有人都知道所有人都知道此事,所有人都知道所有人都知道所有人都知道此事,等等等等。但在這個(gè)條件中的“若干”不一定非要具體一一給出數(shù)字來(lái)。這個(gè)信息具體地可以是象上面經(jīng)典的形式,列舉出每種顏色帽子的數(shù)目“有3頂黑帽子,2頂白帽子,3個(gè)人”,也可以是“有紅黃綠三種顏色的帽子各1頂2頂3頂,但具體不知道哪種顏色是幾頂,有6個(gè)人”, 甚至連具體人數(shù)也可以不知道,“有不知多少人排成一排,有黑白兩種帽子,每種帽子的數(shù)目都比人數(shù)少1”,這時(shí)候那個(gè)排在最后的人并不知道自己排在最后——直到開(kāi)始問(wèn)他時(shí)發(fā)現(xiàn)在他回答前沒(méi)有別人被問(wèn)到,他才知道他在最后。在這個(gè)帖子接下去的部分當(dāng)我出題的時(shí)候我將只寫(xiě)出“有若干種顏色的帽子,每種若干頂,有若干人”這個(gè)預(yù)設(shè)條件,因?yàn)檫@部分確定了,題目也就確定了。3)剩下的沒(méi)有戴在大家頭上的帽子當(dāng)然都被藏起來(lái)了,隊(duì)伍里的人誰(shuí)都不知道都剩下些什么帽子。4)所有人都不是色盲,不但不是,而且只要兩種顏色不同,他們就能分別出來(lái)。當(dāng)然他們的視力也很好,能看到前方任意遠(yuǎn)的地方。他們極其聰明,邏輯推理是極好的??偠灾灰碚撋细鶕?jù)邏輯推導(dǎo)得出來(lái),他們就一定推導(dǎo)得出來(lái)。相反地如果他們推不出自己頭上帽子的顏色,任何人都不會(huì)試圖去猜或者作弊偷看——不知為不知。5)后面的人不能和前面的人說(shuō)悄悄話或者打暗號(hào)。當(dāng)然,不是所有的預(yù)設(shè)條件都能給出一個(gè)合理的題目。比如有99頂黑帽子,99頂白帽子,2個(gè)人,無(wú)論怎么戴,都不可能有人知道自己頭上帽子的顏色。另外,只要不是只有一種顏色的帽子,在只由一個(gè)人組成的隊(duì)伍里,這個(gè)人也是不可能說(shuō)出自己帽子的顏色的?! 〉窍旅孢@幾題是合理的題目:1)3頂紅帽子,4頂黑帽子,5頂白帽子,10個(gè)人。2)3頂紅帽子,4頂黑帽子,5頂白帽子,8個(gè)人。3)n頂黑帽子,n1頂白帽子,n個(gè)人(n0)。4)1頂顏色1的帽子,2頂顏色2的帽子,……,99頂顏色99的帽子,100頂顏色100的帽子,共5000個(gè)人。5)有紅黃綠三種顏色的帽子各1頂2頂3頂,但具體不知道哪種顏色是幾頂,有6個(gè)人。6)有不知多少人(至少兩人)排成一排,有黑白兩種帽子,每種帽子的數(shù)目都比人數(shù)少1。  大家可以先不看我下面的分析,試著做做這幾題。  如果按照上面3頂黑帽2頂白帽時(shí)的推理方法去做,那么10個(gè)人就可以把我們累死,別說(shuō)5000個(gè)人了。但是3)中的n是個(gè)抽象的數(shù),考慮一下怎么解決這個(gè)問(wèn)題,對(duì)解決一般的問(wèn)題大有好處?! 〖僭O(shè)現(xiàn)在n個(gè)人都已經(jīng)戴好了帽子,問(wèn)排在最后的那一個(gè)人他頭上的帽子是什么顏色,什么時(shí)候他會(huì)回答“知道”?很顯然,只有在他看見(jiàn)前面n1個(gè)人都戴著白帽時(shí)才可能,因?yàn)檫@時(shí)所有的n1頂白帽都已用光,在他自己的腦袋上只能頂著黑帽子,只要前面有一頂黑帽子,那么他就無(wú)法排除自己頭上是黑帽子的可能——即使他看見(jiàn)前面所有人都是黑帽,他還是有可能戴著第n頂黑帽?! ‖F(xiàn)在假設(shè)最后那個(gè)人的回答是“不知道”,那么輪到問(wèn)倒數(shù)第二人。根據(jù)最后面那位的回答,他能推斷出什么呢?如果他看見(jiàn)的都是白帽,那么他立刻可以推斷出自己戴的是黑帽——要是他也戴著白帽,那么最后那人應(yīng)該看見(jiàn)一片白帽,問(wèn)到他時(shí)他就該回答“知道”了。 但是如果倒數(shù)第二人看見(jiàn)前面至少有一頂黑帽,他就無(wú)法作出判斷——他有可能戴著白帽,但是他前面的那些黑帽使得最后那人無(wú)法回答“知道”;他自然也有可能戴著黑帽?! ∵@樣的推理可以繼續(xù)下去,但是我們已經(jīng)看出了苗頭。最后那個(gè)人可以回答“知道”當(dāng)且僅當(dāng)他看見(jiàn)的全是白帽,所以他回答“不知道”當(dāng)且僅當(dāng)他至少看見(jiàn)了一頂黑帽。這就是所有帽子顏色問(wèn)題的關(guān)鍵!  如果最后一個(gè)人回答“不知道”,那么他至少看見(jiàn)了一頂黑帽,所以如果倒數(shù)第二人看見(jiàn)的都是白帽,那么最后那個(gè)人看見(jiàn)的至少一頂黑帽在哪里呢?不會(huì)在別處,只能在倒數(shù)第二人自己的頭上。這樣的推理繼續(xù)下去,對(duì)于隊(duì)列中的每一個(gè)人來(lái)說(shuō)就成了:  “在我后面的所有人都看見(jiàn)了至少一頂黑帽,否則的話他們就會(huì)按照相同的判斷斷定自己戴的是黑帽,所以如果我看見(jiàn)前面的人戴的全是白帽的話,我頭上一定戴著我身后那個(gè)人 看見(jiàn)的那頂黑帽?!薄 ∥覀冎雷钋懊娴哪莻€(gè)人什么帽子都看不見(jiàn),就不用說(shuō)看見(jiàn)黑帽了,所以如果他身后的所有人都回答說(shuō)“不知道”,那么按照上面的推理,他可以確定自己戴的是黑帽,因?yàn)樗砗蟮娜吮囟匆?jiàn)了一頂黑帽——只能是第一個(gè)人他自己頭上的那頂。事實(shí)上很明顯,第一個(gè)說(shuō)出自己頭上是什么顏色帽子的那個(gè)人,就是從隊(duì)首數(shù)起的第一個(gè)戴黑帽子的人,也就是那個(gè)從隊(duì)尾數(shù)起第一個(gè)看見(jiàn)前面所有人都戴白帽子的人?! ∵@樣的推理也許讓人覺(jué)得有點(diǎn)循環(huán)論證的味道,因?yàn)樯厦婺嵌瓮评碇邪恕叭绻麆e人也使用相同的推理”這樣的意思,在邏輯上這樣的自指式命題有點(diǎn)危險(xiǎn)。但是其實(shí)這里沒(méi)有循環(huán)論證,這是類(lèi)似數(shù)學(xué)歸納法的推理,每個(gè)人的推理都建立在他后面那些人的推理上,而對(duì)于最后一個(gè)人來(lái)說(shuō),他的身后沒(méi)有人,所以他的推理不依賴(lài)于其他人的推理就可以成立,是歸納中的第一個(gè)推理。稍微思考一下,我們就可以把上面的論證改得適合于任何多種顏色的推論:  “如果我們可以從假設(shè)斷定某種顏色的帽子一定會(huì)在隊(duì)列中出現(xiàn),從隊(duì)尾數(shù)起第一個(gè)看不見(jiàn)這種顏色的帽子的人就立刻可以根據(jù)和此論證相同的論證來(lái)作出判斷,他戴的是這種顏色的帽子?,F(xiàn)在所有我身后的人都回答不知道,所以我身后的人也看見(jiàn)了此種顏色的帽子。如果在我前面我見(jiàn)不到此顏色的帽子,那么一定是我戴著這種顏色的帽子?!碑?dāng)然第一個(gè)人的初始推理相當(dāng)簡(jiǎn)單:“隊(duì)列中一定有人戴這種顏色的帽子,現(xiàn)在我看不見(jiàn)前面有人戴這顏色的帽子,那它只能是戴在我的頭上了?!薄 ?duì)于題1)事情就變得很明顯,3頂紅帽子,4頂黑帽子,5頂白帽子給10個(gè)人戴,隊(duì)列中每種顏色至少都該有一頂,于是從隊(duì)尾數(shù)起第一個(gè)看不見(jiàn)某種顏色的帽子的人就能夠斷定他自己戴著這種顏色的帽子,通過(guò)這點(diǎn)我們也可以看到,最多問(wèn)到從隊(duì)首數(shù)起的第三人時(shí),就應(yīng)該有人回答“知道”了,因?yàn)閺年?duì)首數(shù)起的第三人最多只能看見(jiàn)兩頂帽子,所以最多看見(jiàn)兩種顏色,如果他后面的人都回答“不知道”,那么他前面一定有兩種顏色的帽子,而他頭上戴的一定是他看不見(jiàn)的那種顏色的帽子?! ☆}2)也一樣,3頂紅帽子,4頂黑帽子,5頂白帽子給8個(gè)人戴,那么隊(duì)列中一定至少有一頂白帽子,因?yàn)槠渌伾悠饋?lái)一共才7頂,所以隊(duì)列中一定會(huì)有人回答“知道”。  題4)的規(guī)模大了一點(diǎn),但是道理和2)完全一樣。100種顏色的5050頂帽子給5000人戴,前面99種顏色的帽子數(shù)量是1+……+99=4950,所以隊(duì)列中一定有第100種顏色的帽子(至少有50頂),所以如果自己身后的人都回答“不知道”,那么那個(gè)看不見(jiàn)顏色100帽子的人就可以斷定自己戴著這種顏色的帽子?! ≈劣?)、6)“有紅黃綠三種顏色的帽子各1頂2頂3頂,但具體不知道哪種顏色是幾頂,有6個(gè)人”以及“有不知多少人排成一排,有黑白兩種帽子,每種帽子的數(shù)目都比人數(shù)少1”,原理完全相同,我就不具體分析了?! ∽詈笠赋龅囊稽c(diǎn)是,上面我們只是論證了,如果我們可以根據(jù)各種顏色帽子的數(shù)量和隊(duì)列中的人數(shù)判斷出在隊(duì)列中至少有一頂某種顏色的帽子,那么一定有一人可以判斷出自己頭上的帽子的顏色。因?yàn)槿绻猩砗蟮娜硕蓟卮稹安恢馈钡脑?,那個(gè)從隊(duì)尾數(shù)起第一個(gè)看不見(jiàn)這種顏色的帽子的人就可以判斷自己戴了此顏色的帽子。但是這并不是說(shuō)在詢(xún)問(wèn)中一定是由他來(lái)回答“知道”的,因?yàn)檫€可能有其他的方法來(lái)判斷自己頭上帽子的顏色。比如說(shuō)在題2)中,如果隊(duì)列如下:(箭頭表示隊(duì)列中人臉朝的方向)    白白黑黑黑黑紅紅紅白→那么在隊(duì)尾第一人就立刻可以回答他頭上的是白帽,因?yàn)樗匆?jiàn)了所有的3頂紅帽子和4頂黑帽子,能留給他自己戴的只能是白帽子了 【69】假設(shè)排列著100個(gè)乒乓球,由兩個(gè)人輪流拿球裝入口袋,能拿到第100個(gè)乒乓球的人為勝利者。條件是:每次拿球者至少要拿1個(gè),但最多不能超過(guò)5個(gè),問(wèn):如果你是最先拿球的人,你該拿幾個(gè)?以后怎么拿就能保證你能得到第100個(gè)乒乓球?首先拿4個(gè) 別人拿n個(gè)你就拿6-n個(gè)【70】盧姆教授說(shuō):“有一次我目擊了兩只山羊的一場(chǎng)殊死決斗,結(jié)果引出了一個(gè)有趣的數(shù)學(xué)問(wèn)題。我的一位鄰居有一只山羊,重54磅,它已有好幾個(gè)季度在附近山區(qū)稱(chēng)王稱(chēng)霸。后來(lái)某個(gè)好事之徒引進(jìn)了一只新的山羊,比它還要重出3磅。開(kāi)始時(shí),它們相安無(wú)事,彼此和諧相處??墒怯幸惶?,較輕的那只山羊站在陡峭的山路頂上,向它的競(jìng)爭(zhēng)對(duì)手猛撲過(guò)去,那對(duì)手站在土丘上迎接挑戰(zhàn),而挑戰(zhàn)者顯然擁有居高臨下的優(yōu)勢(shì)。不幸的是,由于猛烈碰撞,兩只山羊都一命嗚呼了?,F(xiàn)在要講一講本題的奇妙之處。對(duì)飼養(yǎng)山羊頗有研究,還寫(xiě)過(guò)書(shū)的喬治.阿伯克龍比說(shuō)道:“通過(guò)反復(fù)實(shí)驗(yàn),我發(fā)現(xiàn),動(dòng)量相當(dāng)于一個(gè)自20英尺高處墜落下來(lái)的30磅重物的一次撞擊,正好可以打碎山羊的腦殼,致它死命?!比绻f(shuō)得不錯(cuò),那么這兩只山羊至少要有多大的逼近速度,才能相互撞破腦殼?你能算出來(lái)嗎?1英尺(ft)=(m)1磅(lb)=(kg)通過(guò)實(shí)驗(yàn)得到撞破腦殼所需要的機(jī)械能是mgh=(30*)**(20*)=(J) 對(duì)于兩只山羊撞擊瞬間來(lái)說(shuō),比較重的那只僅僅是站在原地,只有較輕的山羊具有速度,而題目中暗示我們,兩只羊僅一次碰撞致死。 現(xiàn)在我們只需要求得碰撞瞬間輕山羊的瞬時(shí)速度就可以了,根據(jù)機(jī)械能守恒定律:mgh=1/2(m1v^2)可以得出速度。m1是輕山羊的重量?!?1】據(jù)說(shuō)有人給酒肆的老板娘出了一個(gè)難題:此人明明知道店里只有兩個(gè)舀酒的勺子,分別能舀7兩和11兩酒,卻硬要老板娘賣(mài)給他2兩酒。聰明的老板娘毫不含糊,用這兩個(gè)勺子在酒缸里舀酒,并倒來(lái)倒去,居然量出了2兩酒,聰明的你能做到嗎?11,04,74,00,411,48,78,01,71,00,111,15,75,00,511,59,79,02,7,這樣就有2斤了?!?2】已知:每個(gè)飛機(jī)只有一個(gè)油箱,飛機(jī)之間可以相互加油(注意是相互,沒(méi)有加油機(jī))一箱油可供一架飛機(jī)繞地球飛半圈,問(wèn)題:為使至少一架飛機(jī)繞地球一圈回到起飛時(shí)的飛機(jī)場(chǎng),至少需要出動(dòng)幾架飛機(jī)?(所有飛機(jī)從同一機(jī)場(chǎng)起飛,而且必須安全返回機(jī)場(chǎng),不允許中途降落,中間沒(méi)有飛機(jī)場(chǎng))需要3架飛機(jī)(記為A,B,C),A走完全程。如下圖,黑色箭頭表示飛行方向,紅色箭頭表示一架給另一架加油,紅色數(shù)字表示加油量整個(gè)油箱容量的比值?!?3】在9個(gè)點(diǎn)上畫(huà)10條直線,要求每條直線上有三個(gè)點(diǎn)?【74】一個(gè)岔路口分別通向誠(chéng)實(shí)國(guó)和說(shuō)謊國(guó)。來(lái)了兩個(gè)人,已知一個(gè)是誠(chéng)實(shí)國(guó)的,另一個(gè)是說(shuō)謊國(guó)的。誠(chéng)實(shí)國(guó)永遠(yuǎn)說(shuō)實(shí)話,說(shuō)謊國(guó)永遠(yuǎn)說(shuō)謊話?,F(xiàn)在你要去說(shuō)謊國(guó),但不知道應(yīng)該走哪條路,需要問(wèn)這兩個(gè)人。請(qǐng)問(wèn)應(yīng)該怎么問(wèn)?問(wèn):請(qǐng)問(wèn)你從哪里來(lái)?回答肯定都是指向誠(chéng)實(shí)國(guó)的?!?5】在一天的24小時(shí)之中,時(shí)鐘的時(shí)針、分針和秒針完全重合在一起的時(shí)候有幾次?都分別是什么時(shí)間?你怎樣算出來(lái)的?只有兩次假設(shè)時(shí)針的角速度是ω(ω=π/6每小時(shí)),則分針的角速度為12ω,秒針的角速度為72ω。 分針與時(shí)針再次重合的時(shí)間為t,則有12ωtωt=2π,t=12/11小時(shí),顯然秒針不與時(shí)針?lè)轴樦睾?,同樣可以算出其?0次分針與時(shí)針重合時(shí)秒針都不能與它們重合。只有在正12點(diǎn)和0點(diǎn)時(shí)才會(huì)重。證明:將時(shí)針視為靜止,考察分針,秒針對(duì)它的相對(duì)速度:12個(gè)小時(shí)作為時(shí)間單位“1”,“圈/12小時(shí)”作為速度單位,則分針?biāo)俣葹?1,秒針?biāo)俣葹?19。由于11與719互質(zhì),記12小時(shí)/(11*719)為時(shí)間單位Δ,則分針與時(shí)針重合當(dāng)且僅當(dāng) t=719kΔ k∈Z秒針與時(shí)針重合當(dāng)且僅當(dāng)t=11jΔj∈Z而719與11的最小公倍數(shù)為11*719,所以若t=0時(shí)三針重合,則下一次三針重合必然在t=11*719*Δ時(shí),即t=12點(diǎn)。 完美DOC格式
點(diǎn)擊復(fù)制文檔內(nèi)容
數(shù)學(xué)相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1