freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

圓錐曲線題型總結(jié)-資料下載頁

2025-03-25 00:04本頁面
  

【正文】 (4)(4)-(3)    得 即點總在定直線上問題十:范圍問題(本質(zhì)是函數(shù)問題)設(shè)、分別是橢圓的左、右焦點。(Ⅰ)若是該橢圓上的一個動點,求的最大值和最小值;(Ⅱ)設(shè)過定點的直線與橢圓交于不同的兩點、且∠為銳角(其中為坐標原點),求直線的斜率的取值范圍。解:(Ⅰ)解法一:易知 所以,設(shè),則因為,故當,即點為橢圓短軸端點時,有最小值當,即點為橢圓長軸端點時,有最大值解法二:易知,所以,設(shè),則(以下同解法一)(Ⅱ)顯然直線不滿足題設(shè)條件,可設(shè)直線,聯(lián)立,消去,整理得:∴由得:或又 ∴又∵,即 ∴故由①、②得或問題十一、存在性問題:(存在點,存在直線y=kx+m,存在實數(shù),存在圖形:三角形(等比、等腰、直角),四邊形(矩形、菱形、正方形),圓)設(shè)橢圓E: (a,b0)過M(2,) ,N(,1)兩點,O為坐標原點,(I)求橢圓E的方程;(II)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且?若存在,寫出該圓的方程,并求|AB |的取值范圍,若不存在說明理由。解:(1)因為橢圓E: (a,b0)過M(2,) ,N(,1)兩點,所以解得所以橢圓E的方程為(2)假設(shè)存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且,設(shè)該圓的切線方程為解方程組得,即, 則△=,即,要使,需使,即,所以,所以又,所以,所以,即或,因為直線為圓心在原點的圓的一條切線,所以圓的半徑為,所求的圓為,此時圓的切線都滿足或,而當切線的斜率不存在時切線為與橢圓的兩個交點為或滿足,綜上, 存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且.因為,所以, ①當時因為所以,所以,所以當且僅當時取”=”. ② 當時,.③ 當AB的斜率不存在時, 兩個交點為或,所以此時,綜上, |AB |的取值范圍為即: 12
點擊復制文檔內(nèi)容
研究報告相關(guān)推薦

圓錐曲線常考題型總結(jié)(教師版)-資料下載頁

【總結(jié)】直線和圓錐曲線??糹an錐曲線經(jīng)