【正文】
體監(jiān)測(cè)面II。具體監(jiān)測(cè)方案見圖41 Z Ⅱ 1 2 B Y X I A S 圖41觀測(cè)方案 該大廈每上升兩層就對(duì)監(jiān)測(cè)面I進(jìn)行一期的監(jiān)測(cè)工作,大廈主體工程竣工后,在做第一期監(jiān)測(cè)面I I的監(jiān)測(cè)工作時(shí),已做了23期監(jiān)測(cè)面I的監(jiān)測(cè)同第一期監(jiān)督面I I監(jiān)測(cè)為同一時(shí)間。大廈竣工后對(duì)監(jiān)測(cè)面I, II又進(jìn)行了17期監(jiān)測(cè),前期每月做一次監(jiān)測(cè)工作,以后每半年檢測(cè)一次,觀測(cè)時(shí)間選在一天的同一時(shí)間段。表41列出了基礎(chǔ)監(jiān)測(cè)面的I的18個(gè)監(jiān)測(cè)點(diǎn)第23期到第40期間的坐標(biāo)變化值,表42列出了整體形變監(jiān)測(cè)面I I的2個(gè)點(diǎn)第1, 12, 17的坐標(biāo)值。表41監(jiān)測(cè)面I上監(jiān)測(cè)點(diǎn)23~40期坐標(biāo)變化值 單位:mm點(diǎn)號(hào)△x△y△z點(diǎn)號(hào)△X△y△z110211312413514615716817918表42監(jiān)測(cè)面II上監(jiān)測(cè)點(diǎn)第117期的坐標(biāo)值點(diǎn)號(hào)第1期第12期第17期xyzxyzxyz12 因這里討論的形變模型主要是用于竣工后建筑物的形變監(jiān)測(cè),所以大廈在施工過程中對(duì)監(jiān)測(cè)面I所獲得的前23期監(jiān)測(cè)數(shù)據(jù),可按本書的相關(guān)方法處理,以反映大廈的水平變形和沉降,這里不再贅述。監(jiān)測(cè)面I的后17期的數(shù)據(jù),只進(jìn)行重心坐標(biāo)的計(jì)算,以體現(xiàn)它的幾何中心的坐標(biāo)變化,監(jiān)測(cè)面II的后17期監(jiān)測(cè)數(shù)據(jù)是研究的重點(diǎn),按本章變形模型處理。 若基礎(chǔ)監(jiān)測(cè)面I的中心坐標(biāo)差較大,采用變形模型計(jì)算轉(zhuǎn)軸矢量和轉(zhuǎn)角繪圖時(shí),應(yīng)充分考慮基礎(chǔ)監(jiān)測(cè)面幾何中心的位置。根據(jù)監(jiān)測(cè)數(shù)據(jù),基礎(chǔ)監(jiān)測(cè)面I第23期與40期時(shí)間段內(nèi)的重心坐標(biāo)差為 計(jì)算結(jié)果表明,基礎(chǔ)監(jiān)測(cè)面(大廈底部)(為△x和△y的平均值),因此基礎(chǔ)監(jiān)測(cè)面重心的微小變化在繪圖時(shí)可忽略不計(jì)。 根據(jù)監(jiān)測(cè)面II上各監(jiān)測(cè)點(diǎn)的觀測(cè)數(shù)據(jù),計(jì)算監(jiān)測(cè)面II的轉(zhuǎn)動(dòng)矢量和轉(zhuǎn)角:112期,a1=0. 031, a2 =0. 029, a3=0. 976, =1. 21;117期,a1=,a2=, a3=, =。由這些數(shù)據(jù)直接繪得圖42 II1, II12, II17:分別表示第1, 12, 17期監(jiān)測(cè)面II上的位置。 Ⅱ17 Ⅱ2 Ⅱ1 O圖42 各次GPS觀測(cè)數(shù)據(jù)中的誤差及計(jì)算結(jié)果中的誤差列于表53。表中數(shù)據(jù)證明GPS平面坐標(biāo)觀測(cè)精度較高,高層觀測(cè)誤差大約為平面坐標(biāo)觀測(cè)誤差的3倍。根據(jù)平差結(jié)果及誤差傳播定律,不難算出轉(zhuǎn)動(dòng)矢量及轉(zhuǎn)角中誤差, 。這樣的精度對(duì)于描述高層建筑物整體形變是足夠的。形變模型的應(yīng)用是可靠的。表43觀測(cè)值及計(jì)算結(jié)果的精度統(tǒng)計(jì)觀測(cè)值中誤差/mm第12期轉(zhuǎn)動(dòng)矢量及及轉(zhuǎn)角誤差第17期轉(zhuǎn)動(dòng)矢量及及轉(zhuǎn)角誤差xyza1a2a3a1a2a3 將GPS技術(shù)用于高層建筑物的形變監(jiān)測(cè),并開展形變監(jiān)測(cè)模型和監(jiān)測(cè)方案的研究是一項(xiàng)重要工作,本算例針對(duì)高層建筑物特征及其形變監(jiān)測(cè)的新要求,建立了建筑物整體形變模型,討論了適合形變模型的監(jiān)測(cè)方案。綜上所述,可以得到以下結(jié)論: (1)對(duì)于高層建筑物的變形監(jiān)測(cè)來說,形變模型具有普遍的適用性和有效性,通過變形分析和預(yù)測(cè),對(duì)建筑物的施工和運(yùn)營(yíng)安全提供基本保障。 (2)該監(jiān)測(cè)方案在兼顧傳統(tǒng)方法的基礎(chǔ)上,克服了觀測(cè)數(shù)據(jù)量大、變形監(jiān)測(cè)精度求高等眾多難題,充分發(fā)揮了GPS定位的技術(shù)優(yōu)勢(shì)。 (3)可以直觀方便的繪制出高層建筑物整體形變位置圖,特別當(dāng)GPS做連續(xù)觀測(cè)時(shí),可以利用多期數(shù)據(jù)反映高層建筑物的形變動(dòng)態(tài)。主要參考文獻(xiàn)﹝1﹞.. [D].山東. 山東大學(xué) .2012﹝2﹞.徐紹銓,張華海,(第三版). [M].﹝3﹞.丁銳. GPS技術(shù)在建筑物變形監(jiān)測(cè)中的應(yīng)用研究. [D]. 天津. ﹝4﹞.. GPS技術(shù)在變形監(jiān)測(cè)中的應(yīng)用綜述. [J]. 工程地球物理學(xué)報(bào). 第2卷第2期﹝5﹞.. 高層建筑物變形監(jiān)測(cè)的研究 [C]. .﹝6﹞.徐偉聲. GPS在工程變形監(jiān)測(cè)中的應(yīng)用. [J]. 湖北民族學(xué)院學(xué)報(bào)(自然科學(xué)版). 第27卷第一期﹝7﹞.. [M].﹝8﹞.(第二版). [M].﹝9﹞.. [M].﹝10﹞.. [M].﹝11﹞胡友健,梁新美,[J].測(cè)繪學(xué)報(bào),2006,9.﹝12﹞李明峰,馮寶紅,[M].北京:國(guó)防工業(yè)出版社﹝13﹞、GPS與GIS集成的定義、理論與關(guān)鍵技術(shù)[J].遙感學(xué)報(bào),1997,1(1): 6468.﹝14﹞過靜珺,戴連君,盧云川.虎門大橋 GPS(RTK)實(shí)時(shí)位移監(jiān)測(cè)方法研究,測(cè)繪通報(bào)2000,(12):412﹝15﹞李德仁,誤差處理和可靠性理論,測(cè)繪出版社,1998.致 謝 這篇畢業(yè)論文是在周老師精心指導(dǎo)下完成的。當(dāng)初接觸畢業(yè)論文時(shí)覺得特別難不知道怎么下手。值得我們慶幸的是周老師一直在輔導(dǎo)我們,從一開始的畢業(yè)論文的認(rèn)知到最后的論文定稿。剛開始周老師怕我們對(duì)論文有恐懼感,就給我們找來好多經(jīng)典論文讓我們閱讀,讓我們對(duì)畢業(yè)論文有個(gè)初步認(rèn)識(shí)。寫論文的一步步中都有我們周老師輔導(dǎo)的印記。在此,我要向我們的周老師獻(xiàn)上我最崇高的敬意和深深地謝意!同時(shí)我要感謝測(cè)繪學(xué)院的全體老師,如果沒有你們這四年來的教導(dǎo)我也不會(huì)完成此次的論文。四年來的每節(jié)課,是老師您將最精華的語(yǔ)句留在我們心中,這將成為我們將來一生的財(cái)富。 最后還要感謝和我一起奮斗四年的同學(xué)們,是你們帶給我了學(xué)習(xí)的樂趣前進(jìn)的動(dòng)力,還讓我感受到家庭的溫暖和團(tuán)結(jié)的力量。附錄1A new method for mining deformation monitoring with GPS一RTK GAO Jingxiang, LIU Chao, WANG Jian, LI Zengke, MENG Xiangchao 1 .Key Laboratory for Land Environment and Disaster Monitoring of State Bureau of Surveying and Mapping, China University of Mining and Technology, Xuzhou 221116, China。2. School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China Received 19 June 2011。accepted 10 November 2011Abstract: Based on ranging intersection theory, a new method which is simple and easy to operate was proposed for data collection in the mine surface deformation monitoring with GPSRTK centering rod measurements. It can fully eliminate the inevitable shaking error and the vertical deflection, and to some extent weaken the multipath effect on the estimates of coordinates in a relatively short period of time, using highfrequency observations. The results show that threedimensional coordinates with a height accuracy better than 1 cm, horizontal accuracy better than 2?4 cm can be achieved through only 15?30 s continuous observation by 20 Hz highfrequency and effectively improve the measurement accuracy and efficiency of RTK, fully satisfying the highspeed and highprecision data acquisition in mine surface subsidence deformation monitoring. Key words: GPS。 rover pole。 multipath delay。 deformation monitoring1 Introduction In order to develop, utilize and protect the coal resources rationally, and promote and ensure the development of the coal industry, the Chinese government has enacted and improved some rules and regulations. A key problem of the rules is that how to confirm the range of protecting coal column by different coal mining methods, burial depth, seam thickness, roof and floor lithologic characters, geologic structure .Typically, a series of observation stations arranged at regular intervals (1525 m), measuring relative displ acements of the stations by the traditional techniques (leveling, total station, etc), were established to summarize the change law of parameters of surface movement for production and construction of mine . However, the surface deformation is expensive to carry out or cannot be measured by traditional techniques in some coal mine areas, especially in the , it is necessary to employ effective techniques to obtain the deformation years,interferometric synthetic aperture radar (InSA),threedimensional (3D) laser scanner , digital closerange photogrammetry have received increasinglygreat attentions and have achieved