【正文】
i 2kj /1 ????? pKzi i pqfc ,||)||(|| /1 ??? ???? pqKpqK gg ?????? ? , ||||||sup 1|||| ?? pKzi i pqfc ,||)||(|| /1 ??? ???? 綜上所述,引理 得到證明 . 定理的證明 定理 的證明 : 由引理 得 pqpqspq Kzj jsjbKzj bjsjFKb fTfTfT , ||)|)2(|(||||)||2(|||||| /1/1 ???? ????? ?? ??? ?? ? ?? ? ???? pqKj jsj fc ,||)||2(|| /1 ???? ? ?? ?? ? spq FKfc ??,|||| ??. 定理 的證明 : 由引理 得 ????? ???? ??/1/1 )||)2(||()||||2(|||| , ?? ???? ??j KjsjbKbjjsjBKb pqpqspq fTfTfT ??? ??? ?? /1)||||2( ,? ?? ?j Kjsj pqfc ? spq BKfc ??,|||| ??. 參考文獻 [1] Ricci F, Stein E analysis on nilpotent groups and singular integrals, I. Oscillatory integrals[J].J. Funct. ,73(1): 179–194. [2] Chanillo S,Christ M. Weak (1, 1) bounds for oscillatory singular integrals[J]. Duke Math. J. 1987,55(1):141–155. [3] LU on Lpboundedness for a class of oscillatory singular integrals with rough kernels[J]. Rev. Mat. ,8:201–219. [4] estimates for rough oscillatory singular integrals[J].J. Fourier Anal. Appl. 2022,6(4) :427–436. [5] LU class of oscillatory singular Integrals[J]. Inter. J. Appl. Math. Sci, 2022,2(1): 4764. [6] HU Guoen, LU Shanzhen, YANG of rough singular integral operators on homogeneous Herz spaces[J].J. Austral. Math. Soc. (Series A) 1999,66(2): 201223. [7] CHEN Jiecheng, JIA Houyu, JIANG Liya. Boundedness of rough oscillatory singular integral on Triebel–Lizorkin spaces[J]. J. Math. Anal. Appl. 2022,306(2):385 397. [8] SUN Yanling, JIANG Yinsheng. Rough singular integrals on Herztype TriebelLizorkin space and Herztype Besov space[J]. Journal of Xinjiang university (Natural Science Edition).2022,28(1):4246. [9] Coifman, R,Rochberg, R,Weiss, G. Factorization theorems for Hardy spaces in several variable. ,103:611635. [10] Janson S. Mean oscillation and mutators of singular integral operators[J]. ,16(2):263 一 270. [11] Paluszynski of the Besov spaces via mutator operator of Coifman,Rochberg and Weiss[J].Indiana ,44(1):117. [12] Coifman R. And Meyer dela des operateurs pseudodifferetiles[J]. ,57:1185. [13] Alvarez J. Bagby R. Kurtz D. And Prez estimates for mutators of linear operators[J].Studia ,104:195209. [14] Hu G, Lpboundedness for the mutators of a homgeneous singular operator [J].Studia ,154(01):1327. [15] Hern225。ndez E. Yang of Herz spaces and ,205(1):6987. [16] GarciaCuerva, de Francia, Norm inequalities and related ,Princeton NJ,1985. [17] Chen,Y. Ding,Y. Lp bounds for the mutator of parabolic singular integral with rough ,27:313334. [18] Chen,Y. Ding,Y. Rough singular integrals on TriebelLizorkin space and Besov ,347: 493501. Boundedness of Oscillatory Singular Integrals on Herztype Spaces YU Hubo, ZHAO Kai, JIANG Nuo, XI Fang, ZHANG Hongjun (College of Mathematics, Qingdao University, Qingdao 266071, China) Abstract: The boundedness of the oscillatory singular integral operator T is discussed. If )(log 1???? nSLL ,based on the boundedness ofT on pL spaces and Herztype spaces, the boundedness of the oscillatory singular integral operator T on the Herztype Besov spaces and the Herztype Triebel–Lizorkin spaces are obtained. Key words: Oscillatory singular integral。 Herz spaces。 Besov spaces。 Triebel–Lizorkin spaces。 boundedness