【總結(jié)】Chapter2(2)偏導(dǎo)數(shù)與高階偏導(dǎo)數(shù)返回一.偏導(dǎo)數(shù)二.高階偏導(dǎo)數(shù)三.偏導(dǎo)數(shù)在經(jīng)濟(jì)分析中的應(yīng)用偏導(dǎo)數(shù)與高階偏導(dǎo)數(shù)目的要求:一.理解多元函數(shù)的偏導(dǎo)數(shù)的概念二.熟練掌握求一階和二階偏導(dǎo)數(shù)的方法重點(diǎn):一.一階、二階偏導(dǎo)數(shù)計(jì)算三.熟練掌握偏導(dǎo)數(shù)
2025-01-14 07:37
【總結(jié)】導(dǎo)數(shù)單調(diào)性、極值、最值教學(xué)目標(biāo):掌握運(yùn)用導(dǎo)數(shù)求解函數(shù)單調(diào)性的步驟與方法重點(diǎn)難點(diǎn):能夠判定極值點(diǎn),并能求解閉區(qū)間上的最值問題利用導(dǎo)數(shù)研究函數(shù)的極值、最值:(1)求導(dǎo)數(shù);(2)解方程;(3)使不等式成立的區(qū)間就是遞增區(qū)間,使成立的區(qū)間就是遞減區(qū)間。,右側(cè)____0,那么是的極大值;如果在根附近的左側(cè)____0,右側(cè)____0,那么是的極小值典型例題:
2025-07-26 05:39
【總結(jié)】題型三極值最值型極大值極小值⑴在包含x0的一個(gè)區(qū)間(a,b)內(nèi),函數(shù)y=f(x)在任何一點(diǎn)的函數(shù)值都小于x0點(diǎn)的函數(shù)值,稱點(diǎn)x0為函數(shù)y=f(x)的極大值點(diǎn),其函數(shù)值f(x0)為函數(shù)的極大值;⑵在包含x0的一個(gè)區(qū)間(a,b)內(nèi),函數(shù)y=f(x)在任何一點(diǎn)的函數(shù)值都大于x0點(diǎn)的函數(shù)值,稱點(diǎn)x0為函數(shù)y=f(x)的極小值點(diǎn),其函數(shù)值f(x0)為函數(shù)的極小值;⑶極大值
2025-07-26 14:27
【總結(jié)】利用導(dǎo)數(shù)求函數(shù)的極值例求下列函數(shù)的極值:1.;2.;3.分析:按照求極值的基本方法,首先從方程求出在函數(shù)定義域內(nèi)所有可能的極值點(diǎn),然后按照函數(shù)極值的定義判斷在這些點(diǎn)處是否取得極值.解:1.函數(shù)定義域?yàn)镽.令,得.當(dāng)或時(shí),,∴函數(shù)在和上是增函數(shù);當(dāng)時(shí),,∴函數(shù)在(-2,2)上是減函數(shù).∴當(dāng)時(shí),函數(shù)有極大值,當(dāng)時(shí),函數(shù)有極小值2.函數(shù)定義域?yàn)?/span>
2025-05-16 02:04
【總結(jié)】1高階導(dǎo)數(shù)的定義萊布尼茨(Leibniz)公式小結(jié)思考題作業(yè)§高階導(dǎo)數(shù)第二章導(dǎo)數(shù)與微分幾個(gè)基本初等函數(shù)的n階導(dǎo)數(shù)2問題:變速直線運(yùn)動(dòng)的加速度.),(tss?設(shè))()(tstv??則瞬時(shí)速度為是加速度a???)(ta定義)()(xfxf?的導(dǎo)數(shù)如果函數(shù)
2025-01-17 09:00
【總結(jié)】河海大學(xué)理學(xué)院《高等數(shù)學(xué)》高等數(shù)學(xué)(上)河海大學(xué)理學(xué)院《高等數(shù)學(xué)》第二章導(dǎo)數(shù)與微分高等數(shù)學(xué)(上)河海大學(xué)理學(xué)院《高等數(shù)學(xué)》問題:變速直線運(yùn)動(dòng)的加速度.),(tfs?設(shè))()(tftv??則瞬時(shí)速度為的變化率對(duì)時(shí)間是速度加速度tva?.])([)()(??????tftv
2025-05-07 12:10
【總結(jié)】第二節(jié)偏導(dǎo)數(shù)與高階偏導(dǎo)數(shù)),(),,(,,),(),(),(),(limlim),(),(,,)1(0000),(),(0000000000000000000yxfyxzxzxfxyxyxfxyxfyxxfxfyxfyxxffxxxyyxxyxyxxx
2025-05-11 17:31
【總結(jié)】1高階導(dǎo)數(shù)第三節(jié)一、高階導(dǎo)數(shù)的定義二、高階導(dǎo)數(shù)求法舉例三、小結(jié)及作業(yè)2一、高階導(dǎo)數(shù)的定義問題:變速直線運(yùn)動(dòng)的加速度.),(tss?設(shè)).()(tstv??則瞬時(shí)速度為的變化率,對(duì)時(shí)間是速度因?yàn)榧铀俣萾va定義.)())((,)()(lim))((,)()(處的二階導(dǎo)數(shù)在點(diǎn)為則稱存在即處可
【總結(jié)】二、高階導(dǎo)數(shù)的運(yùn)算法則第三節(jié)一、高階導(dǎo)數(shù)的概念機(jī)動(dòng)目錄上頁下頁返回結(jié)束高階導(dǎo)數(shù)第二章一、高階導(dǎo)數(shù)的概念速度即sv??加速度即)(???sa引例:變速直線運(yùn)動(dòng)機(jī)動(dòng)目錄上頁下頁返回結(jié)束定義.若函數(shù)
2025-05-05 12:11
【總結(jié)】一個(gè)小球自由下落,它在下落3秒時(shí)的速度是多少??一個(gè)小球自由下落,求它從3s到(3+Δt)s這段時(shí)間內(nèi)的平均速度。變題:解:⑴先求從3s到(3+Δt)s這段時(shí)間內(nèi)的位移的增量Δs;記自由落體運(yùn)動(dòng)的方程為s=s(t)=·t2則s(3+Δt)=(3+Δt)2
2024-11-03 20:19
【總結(jié)】.............123一、復(fù)習(xí)目標(biāo)了解導(dǎo)數(shù)概念的某些實(shí)際背景(瞬時(shí)速度,加速度,光滑曲線切線的斜率等),掌握函數(shù)在一點(diǎn)處的導(dǎo)數(shù)的定義和導(dǎo)數(shù)的幾何意義,理解導(dǎo)數(shù)的概念,熟記常見函數(shù)的導(dǎo)數(shù)公式c,xm(m為有理數(shù)),sinx,cosx,ex
2024-11-03 20:18
【總結(jié)】導(dǎo)數(shù)-常見題型例2、已知P為拋物線y=x2上任意一點(diǎn),則當(dāng)點(diǎn)P到直線x+y+2=0的距離最小時(shí),求點(diǎn)P到拋物線準(zhǔn)線的距離。例1、(1)求過點(diǎn)(1,1)且與曲線y=相切的直線方程。(2)求過點(diǎn)(2,0)且與曲線y=相切的直線方程。一、導(dǎo)數(shù)的幾何意義:——切線的斜率
2024-11-03 20:17
【總結(jié)】NetworkOptimizationExpertTeam知識(shí)的超市,生命的狂歡今日贈(zèng)言向日葵告訴我們,只要面對(duì)著陽光努力向上,日子就會(huì)變得單純而美好。NetworkOptimizationExpertTeam知識(shí)的超市,生命的狂歡復(fù)習(xí)引入:問題1:怎樣利用函數(shù)單調(diào)性的定義來討論其在定義域的單調(diào)性1.一般地,對(duì)
【總結(jié)】第一篇:導(dǎo)數(shù)--函數(shù)的極值練習(xí)題 導(dǎo)數(shù)--函數(shù)的極值練習(xí)題 一、選擇題 () ′(x0)=0時(shí),則f(x0)為f(x)的極大值′(x0)=0時(shí),則f(x0)為f(x)的極小值′(x0)=0時(shí),...
2024-10-28 18:46
【總結(jié)】§3.高階導(dǎo)數(shù)函數(shù)f(x)的導(dǎo)數(shù)f'(x)又稱為f(x)的一階導(dǎo)數(shù)(導(dǎo)函數(shù)),仍可導(dǎo),若)(xf?存在,即xxfxxfx????????)()(lim0則稱其為y=f(x)的二階導(dǎo)數(shù),記為,)(,xfy?????22xdyd或.)(xd
2025-05-05 08:14