【導(dǎo)讀】你對三角形有了哪些新的認識?學(xué)習(xí)過程有什么體會和感悟?從三角形的一個頂點到它的對邊作一條垂線,條對邊叫做三角形的底。
【總結(jié)】三角形全等的條件⑵先任意畫出一個△ABC,再畫一個△A/B/C/,使A/B/=AB,∠A/=∠A,A/C/=AC。把畫好的△A/B/C/剪下,放到△ABC上,它們?nèi)葐??探?已知:任意△ABC,畫一個△A/B/C/,使A/B/=AB,∠A/=∠A,A
2024-11-06 13:41
【總結(jié)】三角形練習(xí)?1.在一個直角三角形中,如果兩個銳角的比為2:3,那么?兩個銳角中,較大銳角的度數(shù)是。?2.直角三角形兩個銳角的平分線所構(gòu)成的鈍角是_度。?3.△ABC中,若∠A=80*,I為三條角平分線交點,則∠BIC=.?4.如果一個三角形中任意兩個內(nèi)角的和都大于第三個角,則
【總結(jié)】相似三角形復(fù)習(xí)(一)給你一個銳角三角形ABC和一條直線MN;問題你能用直線MN去截三角形ABC,使截得的三角形與原三角形相似嗎?相似三角形DE∥BC⊿ADE∽⊿ABCABAEACAD?∠DAE=∠CAB⊿ADE∽⊿ABC基本圖形判定方法∠AE
2024-11-24 13:48
【總結(jié)】三角形全等的判定第1課時全等三角形與全等三角形的判定條件1.的兩個三角形叫做全等三角形,全等三角形的對應(yīng)邊____,對應(yīng)角____.2.兩個三角形只有一組或兩組對應(yīng)相等的元素,這兩個三角形全等;兩個三角形有三組對應(yīng)相等的元素,這兩個三角形
2024-11-09 04:27
【總結(jié)】作業(yè)布置評價小結(jié)鞏固練習(xí)講授新課復(fù)習(xí)判定兩個三角形全等要具備什么條件?
2024-11-09 03:54
【總結(jié)】創(chuàng)設(shè)情節(jié),提出問題下列各組圖形的形狀與大小有什么特點?能夠重合的圖形叫做全等圖形(1)(2)(3)(4)能夠重合兩個三角形叫做全等三角形小試身手下列說法是否正確,并簡要說明理由:(1)邊長相等的正方形都是全等圖形;(2)同一面中華人民共和國國旗上,
2025-07-18 09:49
【總結(jié)】全等三角形下列各組圖形的形狀與大小有什么特點?能夠重合的圖形叫做全等圖形(1)(2)(3)(4)能夠重合的兩個三角形叫做全等三角形小試身手判斷下列說法是否正確,并說明理由:(1)邊長相等的正方形都是全等圖形;(2)同一面中華人民共和國國旗上,4個小五角星
2025-08-01 17:35
【總結(jié)】精品資源第19課三角形與全等三角形知識點:三角形,三角形的角平分線,中線,高線,三角形三邊間的不等關(guān)系,三角形的內(nèi)角和,三角形的分類,全等形,全等三角形及其性質(zhì),三角形全等判定大綱要求1.了解全等形,全等三角形的概念和性質(zhì),逆命題和逆定理的概念,理解三角形,三角形的頂點,邊,內(nèi)角,外角,角平分線,中線和高線,線段中垂線等概念。2.理解三角形的任意兩邊之和大于第
2025-04-16 12:49
【總結(jié)】三角形、全等三角形、軸對稱三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。角平分線:三角形的一個內(nèi)角的平分線與這個角的對邊相交,這個角的頂
2025-07-24 01:22
【總結(jié)】1相似三角形相似三角形的概念2在相似多邊形中,最為簡單的就是相似三角形﹡相似三角形的定義:對應(yīng)角相等,對應(yīng)邊成比例的兩個三角形相似。3∠A=∠A′,∠B=∠B′,∠C=∠C′ACCACBBCBAAB????????△ABC∽△
2025-10-02 14:31
【總結(jié)】相似三角形對應(yīng)角相等,對應(yīng)邊成比例的三角形叫相似三角形.三角形相似判定:,對應(yīng)邊成比例。:平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似。1:兩角對應(yīng)相等,兩三角形相似。2:兩邊對應(yīng)成比例且夾角相等,兩三角形相似。
2024-11-09 12:54
【總結(jié)】第三章三角形1認識三角形(第3課時)1、三角形的定義是什么,它的邊角有什么關(guān)系?2、什么是線段的中點,如何確定線段的中點復(fù)習(xí)在三角形中,連接一個頂點與它對邊中點的線段,叫做這個三角形的中線(median).三角形的“中線”BE=ECBCAE是BC邊上的中線.E
2024-11-28 01:21
【總結(jié)】第四章圖形的認識19三角形與全等三角形目標(biāo)方向理解三角形及其內(nèi)角、外角、中線、高線、角平分線的概念;掌握三角形的三邊關(guān)系,三角形的內(nèi)角和定理及其推論;熟練掌握三角形全等的性質(zhì)與判定和三角形全等的證明,理解三角形全等不僅是解決幾何問題的重要工具,而且是中考的核心內(nèi)容.探索并理解三角形與相交線、平行線和其他多邊形之間的內(nèi)在聯(lián)系,在復(fù)習(xí)中逐步
2024-12-07 15:38
【總結(jié)】第十一章三角形三角形的邊八年級上冊咸寧市咸安區(qū)教育局教研室王格林創(chuàng)設(shè)情景,引入新課提出問題小組合作看了生活中的三角形實例,結(jié)合你以前對三角形的了解,應(yīng)該怎樣給三角形下一定義呢?(讓學(xué)生分組討論,然后讓各組派一個代表發(fā)言)結(jié)合學(xué)生的發(fā)言,辯析如下圖形是不是三角形?傳授新知
2025-08-01 13:28
【總結(jié)】例1在ΔABC中,∠A+∠B=100°,∠C=2∠B.求∠A,∠B,∠C解:在ΔABC中,∠A+∠B=100°所以,∠C=180°-(∠A+∠B)=180°-100°=80&
2024-11-10 22:38