freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

畢業(yè)設(shè)計--螺旋輸送機設(shè)計說明書-資料下載頁

2025-06-04 04:50本頁面
  

【正文】 y of a material usually defined in terms of four factors: Surface finish and integrity of the machined part。 Tool life obtained。 Force and power requirements。 Chip control. Thus, good machinability good surface finish and integrity, long tool life, and low force And power requirements. As for chip control, long and thin (stringy) cured chips, if not broken up, can severely interfere with the cutting operation by being entangled in the cutting zone. Because of the plex nature of cutting operations, it is difficult to establish relationships that quantitatively define the machinability of a material. In manufacturing plants, tool life and surface roughness are generally considered to be the most important factors in machinability. Although not used much any more, approximate machinability ratings are available in the example below. Machinability Of Steels Because steels are among the most important engineering materials (as noted in Chapter 5), their machinability has been studied extensively. The machinability of steels has been mainly improved by adding lead and sulfur to obtain socalled freemachining steels. Resulfurized and Rephosphorized steels. Sulfur in steels forms manganese sulfide inclusions (secondphase particles), which act as stress raisers in the primary shear zone. As a result, the chips produced break up easily and are small。 this improves machinability. The size, shape, distribution, and concentration of these inclusions significantly influence machinability. Elements such as tellurium and selenium, which are both chemically similar to sulfur, act as inclusion modifiers in resulfurized steels. Phosphorus in steels has two major effects. It strengthens the ferrite, causing increased hardness. Harder steels result in better chip formation and surface finish. Note that soft steels can be difficult to machine, with builtup edge formation and poor surface finish. The second effect is that increased hardness causes the formation of short chips instead of continuous 42 stringy ones, thereby improving machinability. Leaded Steels. A high percentage of lead in steels solidifies at the tip of manganese sulfide inclusions. In nonresulfurized grades of steel, lead takes the form of dispersed fine particles. Lead is insoluble in iron, copper, and aluminum and their alloys. Because of its low shear strength, therefore, lead acts as a solid lubricant (Section ) and is smeared over the toolchip interface during cutting. This behavior has been verified by the presence of high concentrations of lead on the toolside face of chips when machining leaded steels. When the temperature is sufficiently highfor instance, at high cutting speeds and feeds (Section )—the lead melts directly in front of the tool, acting as a liquid lubricant. In addition to this effect, lead lowers the shear stress in the primary shear zone, reducing cutting forces and power consumption. Lead can be used in every grade of steel, such as 10xx, 11xx, 12xx, 41xx, etc. Leaded steels are identified by the letter L between the second and third numerals (for example, 10L45). (Note that in stainless steels, similar use of the letter L means “l(fā)ow carbon,” a condition that improves their corrosion resistance.) However, because lead is a wellknown toxin and a pollutant, there are serious environmental concerns about its use in steels (estimated at 4500 tons of lead consumption every year in the production of steels). Consequently, there is a continuing trend toward eliminating the use of lead in steels (leadfree steels). Bismuth and tin are now being investigated as possible substitutes for lead in steels. CalciumDeoxidized Steels. An important development is calciumdeoxidized steels, in which oxide flakes of calcium silicates (CaSo) are formed. These flakes, in turn, reduce the strength of the secondary shear zone, decreasing toolchip interface and wear. Temperature is correspondingly reduced. Consequently, these steels produce less crater wear, especially at high cutting speeds. Stainless Steels. Austenitic (300 series) steels are generally difficult to machine. Chatter can be s problem, necessitating machine tools with high stiffness. However, ferritic stainless steels (also 300 series) have good machinability. Martensitic (400 series) steels are abrasive, tend to form a builtup edge, and require tool materials with high hot hardness and craterwear resistance. Precipitationhardening stainless steels are strong and abrasive, requiring hard and abrasionresistant tool materials. The Effects of Other Elements in Steels on Machinability. The presence of aluminum and silicon in steels is always harmful because these elements bine with oxygen to form 43 aluminum oxide and silicates, which are hard and abrasive. These pounds increase tool wear and reduce machinability. It is essential to produce and use clean steels. Carbon and manganese have various effects on the machinability of steels, depending on their position. Plain lowcarbon steels (less than % C) can produce poor surface finish by forming a builtup edge. Cast steels are more abrasive, although their machinability is similar to that of wrought steels. Tool and die steels are very difficult to machine and usually require annealing prior to machining. Machinability of most steels is improved by cold working, which hardens the material and reduces the tendency for builtup edge formation. Other alloying elements, such as nickel, chromium, molybdenum, and vanadium, which improve the properties of steels, generally reduce machinability. The effect of boron is negligible. Gaseous elements such as hydrogen and nitrogen can have particularly detrimental effects on the properties of steel. Oxyg
點擊復(fù)制文檔內(nèi)容
畢業(yè)設(shè)計相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1