freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

基于rbf神經(jīng)網(wǎng)絡的短期負荷預測研究畢業(yè)論文-資料下載頁

2025-08-19 18:24本頁面

【導讀】確和適應性強的負荷預測模型的渴望,使得負荷預測的重視程度越來越高。作歸一處理并作為訓練數(shù)據(jù)預測10日負荷值。且可以大大地減少隱含層神經(jīng)元的數(shù)目,有效地提高了預測精度和預測速度。符合要求的,從而說明了該方法的正確性和實用性。

  

【正文】 (38) 其中, iX 是 n 維輸 入向量; ? 通常為歐氏范數(shù); kT 是第 k 個隱含層節(jié)點的中心 ? ?lk ,2,1 ?? ; ???R 即 RBF函數(shù),具有局部感受特性,體現(xiàn)了 RBF網(wǎng)絡的非線性映射能力。網(wǎng)絡輸出層第 j 個節(jié)點的輸出,則為隱含層節(jié)點輸出的線性組合: ?? ??lk jkkjj rwy 1 ? (39) 其中, kjw 是隱含層到輸出層的權(quán)值; j? 是第 j 個輸出節(jié)點的閾值。 RBF網(wǎng)絡的關(guān)鍵在于隱含層節(jié)點徑向基函數(shù)的非線性逼近性能,常用的 RBF函數(shù)有: 由 Kriging提出的 Gauss分布函數(shù): ? ? ?????????? 222ex p ?? rr 0?? (310) 由 Hardy提出的多二次函數(shù): ? ? ? ? 2/122 rcr ??? ? ?0?c (311) 由 Duchen提出的薄板樣條函數(shù): ? ? rrr ln2?? (312) 通常采用的是 Gauss分布函數(shù),即隱含層節(jié)點 k的傳遞函數(shù)表達式為: ? ? ? ??????? ??? ??ni kkjik TXXR 1 22 2e xp ? ? ?lk ,2,1 ?? (313) 四川理工學院本科畢業(yè)論文 23 其中, ),2,1( nixX i ??? — n 維輸入向量; kjT — 節(jié)點 k 的中心 kT 的第 i 個分量; k? — 節(jié)點 k 的 Gauss分布寬度 : 高斯基函數(shù)具備如下優(yōu)點: 表示形式簡單,即使對于多變量輸入也不增加太多的復雜性; 徑向?qū)ΨQ; 光滑性好,任意階導數(shù)都存在。 輸出層節(jié)點 j 相應的輸出則可以表示為: ??? lk kkjj rwy 1 ),2,1( Jj ?? (314) 由此可見,對于 RBF網(wǎng)絡來說, kT , k? 及 w 是最為重要 的參數(shù),設計 RBF網(wǎng)絡的任務就是用一定的學習算法來確定這三個參數(shù) 。 RBF 神經(jīng)網(wǎng)絡的學習算法 對于 RBF 網(wǎng)絡來說,輸出層和隱含層所完成的任務是不同的,所以它們學習的策略也不相同。輸出層是對線性權(quán)進行調(diào)整,采用的是線性優(yōu)化策略,因而學習速度較快。而隱含層是對作用函數(shù)的參數(shù)進行調(diào)整,采用的是非線性優(yōu)化策略,因而學習速度較慢。所以說,兩個層次學習過程是不同的,因此學習一般分為兩個層次進行,常用的有以下幾種方法: 隨機選取 RBF 中心 (直接計算法 )[12]。在此方法中,隱層單元傳遞函數(shù)的中心是隨機地在 輸入樣本數(shù)據(jù)中選取的,且中心固定。在 RBF 的中心確定以后,則方差計算公式為: lm 2/??? (315) 其中, m? — 中心之間的最大距離,即基函數(shù)寬度的最大值; l — 隱含層單元中心數(shù)。 自組織 (非監(jiān)督 )學習選取 RBF 中心。在這種方法中, RBF 的中心是可以移動的,并通過自組織學習確定其位置。而輸出層的線性權(quán)值則通過有監(jiān)督學習規(guī)則計算。 (1)學 習中心 ? ?lkTk ,2,1 ?? 。自組織學習過程要用到聚類算法,常用的聚類周路堯:基于 RBF 神經(jīng)網(wǎng)絡的短期負荷預測研究 24 算法是 K— 均值聚類算法。假設聚類中心有 l 個,設 ? ?? ?lknTk ,2,1 ?? 是第 n 次迭代時基函數(shù)的中心。 K — 均值聚類算法具體步驟如下: 第一步:初始化聚類中心,通常將 ??0kT 設置為最初的 l 個樣本,并設迭代步數(shù)0?n ; 第二步:隨機輸入訓練樣本 X ; 第三步:尋找訓練樣本 iX 離哪個中心最近,即找到 ? ?iXk 使其滿足下式: ? ?? ? ? ? ? ?nTiXiXk kk ?? m in ? ?lk ,2,1 ?? (316) 式中, ??nTk 是第 n 次迭代時基函數(shù)的第 k 個中心。 第四步:調(diào)整中心,用下式調(diào)整基函數(shù)的中心為: ? ? ? ? ? ? ? ?? ? ? ?? ?? ???? ????? 其它 當, ,1 nT iXkknTiXnTnTkkkk ? (317) 第五步:判斷是否學完所有的訓練樣本且中心的分布不再變化,是則結(jié)束,否則 lnn ?? 轉(zhuǎn)到第二步。最后得到的 ? ?lkTk ,2,1 ?? ,即為 RBF 網(wǎng)絡最終的基函數(shù)的中心。 (2)確定方差 ? ?lkk ,2,1 ??? 。中心一旦確定后就 固定了,接著要確定基函數(shù)的方差??梢圆捎?RBF 選用的是高斯函數(shù),則方差計算公式為: ldl 2m a x21 ???? ??? ? (318) 式中, l 為隱含層的個數(shù), maxd 為所取中心之間的最大距離。 (3)學習權(quán)值 ? ?Jjlkw kj ,2,1。,2,1 ?? ?? 。權(quán)值的學習可以用 LMS 算法,步驟如下: 第一步:設置變量和參量如下: ? ? ? ? ? ? ? ?? ?nxnxnxnX m, 21 ?? 為輸入向量,或稱訓練樣本。 ? ? ? ? ? ? ? ?? ?nwnwnwnW m, 21 ?? 為權(quán)值向量; ??yn為實際輸出; ??dn為期望輸出; ? 為學習效率; n 為迭代次數(shù)。 四川理工學院本科畢業(yè)論文 25 第二步:初始化,賦給 ??jWn各一個較小的隨機非零值, 0n? 。 第三步:對于一組輸入樣本 ? ? ? ? ? ? ? ?? ?nxnxnxnX m, 21 ?? 和對應的期望輸出 d ,計算 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?nenXnWnWnWnXndne T ?????? 1。 第四步:判斷是否滿足條件,若滿足,算法結(jié)束;若不滿足,將 n 值增加 1,轉(zhuǎn)到第三步重新執(zhí)行。 有監(jiān)督 學 習選取 RBF 中心。在這種方 法中, RBF 的中心以及網(wǎng) 絡的其他自由參數(shù)都是通過有監(jiān)督學習來確定的,這是 RBF 網(wǎng)絡學習 的最一般化的形式。對于這種情況,有監(jiān)督學習可以采用簡單有效的梯度下降法 [13]。簡單來說,考慮具有一般性的單變量輸出網(wǎng)絡,首先建立如下的誤差目標函數(shù)為: ? ?? ??? ??ni ii XFd1221? (319) 式中, id 為對應于輸入樣本 iX 的輸出樣 本, ???F 表示整個網(wǎng)絡 的傳遞函數(shù)。 對網(wǎng)絡的學習要求是,通過優(yōu)化網(wǎng) 絡的自由參數(shù) kT , k? 及 w 使 誤差目標函數(shù)達到最小。通過對上述優(yōu)化問題利用梯度下降法進行求解,從而可得到網(wǎng)絡參數(shù)的優(yōu)化計算公式。對于遞推算法來說,初始化取值是一個極為重要的問題,為了減小學習過程收斂到局部極小的可能,搜索應始于參數(shù)空間某個有效的區(qū)域。為了達到這一目的,可以先 用 RBF 網(wǎng)絡 實現(xiàn)一個標準 的高斯分類算法,然后用分類結(jié)果作為搜索的起點。 正交 最小二 乘 (OLS)法 選 取 RBF 中心。 RBF 神經(jīng)網(wǎng) 絡的另一種重要的學習方法是正交最小二乘 (OLS,Orthogonal Least Square)法 [14]。 OLS 方法 來源于線性回歸模型,其基本思想是將網(wǎng)絡 的輸入 /輸出 關(guān)系用回歸模型來表示,通過正交化回歸算子,分析其對降低殘差的貢獻。學習選擇合適的回歸算子向量及其個數(shù),使網(wǎng)絡輸出滿足二次性能要求:而回歸算子是直 接由 RBF 函 數(shù)來構(gòu)成,在確定了回歸算子之后,也就確 定了 RBF 函數(shù)的參數(shù)。 上述所說的方法是在網(wǎng)絡 結(jié)構(gòu)盡可能簡單 (即隱含層單元數(shù)盡可能小 )的前提下,通過優(yōu)化 RBF 的參數(shù)特別是 RBF 的中心來改善網(wǎng)絡的性能,這些方法可以實現(xiàn)無限逼近效果,但計算起來較為復雜繁瑣。還可以采用另外一種方法就是用增加網(wǎng)絡結(jié)構(gòu)單元來實現(xiàn),即中心固定增加隱含層的神經(jīng)元,這時網(wǎng)絡就只有輸出周路堯:基于 RBF 神經(jīng)網(wǎng)絡的短期負荷預測研究 26 層權(quán)值 W 為一個自由參數(shù),它可以用線性優(yōu)化策略進行調(diào)整,而且這種方法可以同時實現(xiàn)網(wǎng)絡結(jié)構(gòu) (即隱含層單元數(shù) )和逼近精度的最佳組合,隱含層單元數(shù)根據(jù)用戶的誤差精度要求來對應設定,但這種方法的效果與輸入的樣本數(shù)有關(guān),在有限的樣本的前提下,增加隱含層單元最多只能 是達到樣本的數(shù)目,再繼續(xù)增加則不會改善網(wǎng)絡的性能。 RBF 神經(jīng)網(wǎng)絡與 BP 網(wǎng)絡的比較 BP 網(wǎng)絡存在的問題 自 從 Rumelhart 提出了有效的訓練多層感知器網(wǎng)絡的反向傳播 (BP,BackPropagation)算法以來,人們已 將 BP 網(wǎng)絡成功地運用于語音識別、圖像處理等領域。但是它使用恒定的訓練步長,因此它的收斂過程非常緩慢,而且經(jīng)常需要附加的優(yōu)化算法。在實際應用 中 BP 網(wǎng)絡 還存在以下幾個問題: 網(wǎng)絡的 BP 學習算 法的學習步長 及動量因子 很難事先選定。過小的 會引起收斂速度過慢,過大的 會引 起收斂振蕩:過小的 起不了平滑作用,過大的 會使修正遠離梯度最大方向。 BP 算法是 LMS 算 法的推廣。因而存在著 LMS 算法 的局部最小值問題,且易受到輸入模式協(xié)方差矩陣特征值散布的影響。 BP 算法的初值選擇也影響算法的收斂速度,有時甚至會導致算法收斂于局部極小值。 RBF 網(wǎng)絡與 BP 網(wǎng)絡之間的差別 RBF 網(wǎng) 絡 只有三層, BP 網(wǎng)絡則可以是兩層,三層或者多層。 最重要的是 神經(jīng)元的計算功能不一 樣, RBF 神經(jīng)元 是先計算輸入與中心之間的距離,然后再對這一距離進行某種非線性變換,而 BP 網(wǎng)絡神 經(jīng)元則是 先對其輸入進行加權(quán)求和,然后再對計算結(jié)果進行某種非線性變換。 RBF 神經(jīng) 元通常只對輸入刺激起局部反應,即只有當輸入落在輸入空間的一個局部區(qū)域時,它們才產(chǎn)生一個重要的非零響應。所以通 常對于 RBF 網(wǎng)絡 訓練時,樣本集是必須進行仔細選擇的,而且樣本的數(shù)據(jù)個數(shù)也要 求不多。 BP 網(wǎng)絡一般都在較大的范圍內(nèi)對輸入產(chǎn)生非零響應,對于訓練樣本集的選擇,條件不是很四川理工學院本科畢業(yè)論文 27 苛刻,因為該網(wǎng)絡是容許有一定噪聲的。 RBF 網(wǎng)絡輸出 一般都是線性單元, 而 BP 網(wǎng)絡的輸出可以是線 性單元也可以是非線性單元。 本章小結(jié) 神經(jīng)網(wǎng)絡是本次研究的主要 方法,本章節(jié)對神經(jīng)網(wǎng)絡進行簡要陳述,對 RBF神經(jīng)網(wǎng)絡以及其與 BP 神經(jīng)網(wǎng)絡進行了簡要的對比分析。本章節(jié)說明了選取 RBF神經(jīng)網(wǎng)絡為研究方法的原因,并介紹了神經(jīng)網(wǎng)絡算法在電力負荷中的實現(xiàn)。 周路堯:基于 RBF 神經(jīng)網(wǎng)絡的短期負荷預測研究 28 第 4 章 基于 RBF 神經(jīng)網(wǎng)絡的短期負荷預測實例分析 RBF 神經(jīng)網(wǎng)絡的建立 從分析負荷特性可以知道,負荷同日期類型、季節(jié)、天氣等因素密切相關(guān),如雨、 雪等天氣情況會明顯改變負荷的大小與形狀,同樣高溫和嚴寒天氣也會改變負荷的峰值和曲線形狀,特別是近年來,隨著人們生活水平的提高,空調(diào)和取暖負荷的比重明顯上升,氣象因素產(chǎn)生的 作用也越來越大了,通常對負荷影響較大的天氣因素主要有:溫度、大氣狀況 (如陰、晴、雨、雪等 )、一些異常因素如寒流、大雨、大雪等,還有濕度和風力等因素 [12,15]。 經(jīng)大量數(shù)據(jù)統(tǒng)計分析表明,溫度和天氣狀況對負荷變化的影響較其他因素的影響要大,本文對氣象因素的考慮也主要是這兩方面。另外不同的日期類型其負荷曲線也不盡相同。除了上述的影響因素外,還有其它一些影響因素也會對負荷產(chǎn)生影響,如社會經(jīng)濟發(fā)展狀況、隨機因素等。然而,對于日負荷曲線而言,社會經(jīng)濟因素是一種相對變化緩慢的影響因素。對較長時期的負荷歷史記錄分析可以 發(fā)現(xiàn),負荷是按照一種固定的變化趨勢發(fā)展的,如逐步增長或逐步減少。這些因素在中長期的負荷預測中要加以考慮,而對于短期負荷預測,由于是用近期的歷史負荷數(shù)據(jù)訓練網(wǎng)絡,可以認為負荷受這些發(fā)展因素影響而增大的趨勢基本為零,可忽略不計。本文在建立神經(jīng)網(wǎng)絡時,充分考慮了日期類型、溫度和天氣狀況等因素,盡可能使輸入元素包含更多的影響因素。 在短期負荷預測中,對于日期類型的處理一般可以有兩種方法:一是在神經(jīng)網(wǎng)絡模型的輸入端增加輸入節(jié)點,將日類型作為模型的輸入變量,綜合考慮日類型對負荷曲線形狀的影響;另一類是分別考慮各個日類型 ,針對各日類型分別建立神經(jīng)網(wǎng)絡模型,以分解日類型對負荷曲線形狀的影響。本文采取的是前一種方法,并考慮到休息日與工作日的負荷特性迥然不同,作為過渡的周一、五的負荷特件和其它工作日又不盡相同,而周六、日的負荷特性也不完全相同,因此,把握負荷的規(guī)律,針對各個特征日建立不同的預測模型,是必須的。 另外,為了充分體現(xiàn)溫度、氣候?qū)ω摵傻挠绊懀覀儼杨A測日前一天及預測日的最高溫度、最低溫度當作神經(jīng)網(wǎng)絡的四個輸入節(jié)點。 根據(jù)對負荷數(shù)據(jù)具有“近大遠小”相關(guān)性影響的分析,本文選取預測日前一天、前兩天、前一周的同一時刻及前一天前 一個時刻、前兩個時刻的歷史負荷數(shù)四川理工學院本科畢業(yè)論文 29 據(jù)作為神經(jīng)網(wǎng)絡負荷參數(shù)的輸入。神經(jīng)網(wǎng)絡的輸出向量為預測點的負荷,由此本文建立了輸入層為 10 個節(jié)點 (l 個日
點擊復制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1