【導(dǎo)讀】采用Matlab軟件編程實現(xiàn)BP神經(jīng)網(wǎng)絡(luò)算法。將神經(jīng)網(wǎng)絡(luò)算法應(yīng)用于函數(shù)逼近和樣本含量估計問。題中,并分析相關(guān)參數(shù)對算法運行結(jié)果的影響。最后對BP神經(jīng)網(wǎng)絡(luò)算法進行了展望。神經(jīng)網(wǎng)絡(luò)具有大規(guī)模并行、分布式存儲和處理、自組織、自適應(yīng)和自學(xué)習(xí)能力,特別適合處理需要。神經(jīng)網(wǎng)絡(luò)的發(fā)展與神經(jīng)科學(xué)、數(shù)理科學(xué)、認(rèn)。專家系統(tǒng)、模式識別、智能控制、組合優(yōu)化、預(yù)測等領(lǐng)域得到成功應(yīng)用[2]。近年來,神經(jīng)網(wǎng)絡(luò)在模擬人類認(rèn)知的道路上更加深入發(fā)展,并與模糊系統(tǒng)、遺傳算法、進化機制等組合,形成計算智能,成為人工智能的一個重要方向。系統(tǒng)的人工神經(jīng)網(wǎng)絡(luò),將在模式識別、組合優(yōu)化和決策判斷等方面取得傳統(tǒng)計算機所難以達(dá)到的效果。絡(luò)的研究,為人工神經(jīng)網(wǎng)絡(luò)的理論研究開辟了新的途徑。光電結(jié)合的神經(jīng)計算機為人工神經(jīng)網(wǎng)絡(luò)的發(fā)展提供了良好條件。