freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

新型小球藻生物陰極型mfc的基礎特性研究畢業(yè)論文-資料下載頁

2024-08-25 17:56本頁面

【導讀】機廢水中回收有價能源已經(jīng)成為環(huán)境工程領域一個重要的方向。能源微藻生物陰極型微生。渣等有價回收的多重功效,具有廣闊的應用前景。試驗結果表明陰極投加小球藻后MFC的產(chǎn)電水平、陰極溶氧水平、陽極人工。理10d后的COD處理率為%。同時將小球藻放至MFC的陰極室進行培養(yǎng)并不會對。其造成毒害,小球藻生長情況良好。

  

【正文】 密度有了大幅度的提高,為陰極加藻期的 9,1 倍,而陽極人工廢水的 COD 處理率相差不大;最終 陰極持續(xù)光照期內(nèi)阻最低(為 ),是正常運行期的 倍,最大輸出功率密度達 ㎡ , 是 正常運行期 的 倍 ,陽極人工廢水 處理 10d 后 的 COD 處理率 為 %。 ( 4) MFC 正常運行期時的陰極溶氧隨著反應的進行呈現(xiàn)持續(xù)下降趨勢 ,由初始;當陰極添加小球藻后溶氧則呈現(xiàn)明顯的 “ 光升暗降 ” 趨勢,電壓變化與溶氧變化趨勢基本一致,說明 陰極溶氧是影響電壓變化的主要因素 ,光階段溶氧較正常運行期有了大幅度的提高,最大溶氧值為 ;當陰極更換載鉑電極以后,溶氧與電壓的變化 較 陰極加藻期相差不大; 陰極 持續(xù)光照 期 時,溶氧的平均水平較穩(wěn)定,第四章 結論與展望 21 大約為 。 展望 近年來,光合微生物燃料電池的研究開始復興,其中尤以微藻型微生物燃料電池占為主導,而其中的微藻生物陰極型 MFC因可以同時實現(xiàn)污水處理、零碳排放、 CO2捕捉、太陽能捕獲及電能、生物柴油、藻體殘渣等有價回收的多重效果,再度成為一大研究熱點。 我們可以相信隨著微藻技術和 MFC技術的蓬勃發(fā)展,微藻型 MFC尤其是微藻生物陰極型 MFC因其獨特的環(huán)境友好型及可持續(xù)性優(yōu)勢實現(xiàn)工業(yè)化應用的進程指日可待。 南京工業(yè)大學本科畢業(yè)論文 22 參考文獻 [1], , , et Production , Consumption,and environmental pollution for sustainable development:ACase study in and Sustainable Energy Reviews, 2020, 12(6):1529 一 1561P [2]徐云濤 .能源發(fā)展與環(huán)境問題 .能源環(huán)境保護 .2020, 21(4):9 一 11 頁 [3] Rabaey K:Verstracte fuel cells:novel biotechnology for Energy ., :291 一 298P [4]Park D H. GREGORY Z J, Improved fuel cell and electrode designs for Producing electricity from mcrobial ., 2020, 81(3):348355P [5] , fuel cell using Enterobacter aerogenes Bioelectrochem Bioenerg 1989,21:25~32 [6] Berk RS, Canfield JH. Bioelectrochemical energy conversion[J]. Appl Microbiol., 1964, 12:10–12. [7] Schenk P, ThomasHall S, Stephens E, Marx U, Mussgnug J, Posten C,Kruse O, Hankamer B. Second generation biofuels: Highefficiency microalgae for biodiesel production[J]. BioEnergy Res., 2020, 1(1):20–43. [8] Hui Chen(陳輝 ). Construction of sediment Microbial Fuel Cell and its power generation(沉積型微生物燃料電池的構建及產(chǎn)電特性研究 ) [D].JiangSu: Jiangnan University(江南大學 ), 2020 [9] Strik D P B T B, Terlouw H, Hamelers H V, Buisman C J. Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC)[J]. Appl Microbiol Biotechnol., 2020, 81:659–668. [10] Rosenbaum M, Agler M T, Fornero J J, Venkataraman A, Angenent LT. Integrating BES in the wastewater and sludge treatment line. In Bioelectrochemical Systems: From Extracellular Electron Transfer to Biotechnological Application[C]. Edited by Rabaey K, Angenent LT, Schro168。 der U, Keller J. International Water Association。 2020:393–408. [11] Tanaka K, Tamamushi R, Ogawa T. Bioelectrochemical fuelcell operated by the cyanobacterium, Anabaena variabilis[J]. J Chem Technol Biotechnol., 1985, 35B:191–197. [12] Tanaka T, Kashiwagi N, Ogawa T. Effect of light on electrical output of bioelectrochemical fuelcells containing Anabaena variabilis M2: Mechanism of the postillumination burst[J]. J 參考文獻 23 Chem Technol Biotechnol., 1988, 42:235–240. [13] Yagishita T, Horigome T, Tanaka K. Effects of light, CO2, and inhibitors on the current output of biofuel cells containing the photosynthetic anism Synechococcus sp[J]. J Chem Technol Biotechnol., 1993, 56:393–399. [14] Yagishita T, Sawayama S, Tsukahara K I, Ogi T. Performance of photosynthetic electrochemical cells using immobilized Anabaena variabilis M3 in discharge/culture cycles[J]. J Ferment Bioeng., 1998, 85:546–549. [15] Gorby Y A, Yanina S, McLean J S, Rosso K M, Moyles D,Dohnalkova A, Beveridge T J, Chang I S, Kim B H, Kim K S et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR1 and other microanisms[J]. Proc Natl Acad Sci USA, 2020, 103:11358–11363. [16] Yongjin Zou, John Pisciotta, R. Blake Billmyre, Ilia V. Baskakov. Photosynthetic Microbial Fuel Cells With Positive Light Response[J]. Biotechnology and Bioengineering, 2020, 104:939–946. [17] Hui He(何輝 ), Yali Feng(馮雅麗 ), Haoran Li(李浩然 ), Dingjie Li(李頂杰 ). Construction of a Microbial Fuel Cell Using Chlorella vulgaris(利用小球藻構建微生物燃料電池 )[J]. The Chinese Journal of Process Engineering(過程工程學報 ), 2020, 9(1):133?137. [18] Gaffron H. Reduction of carbon dioxide with molecular hydrogen in green algae[J]. Nature, 1939, 143:204?205. [19] Schro168。 der U, Nie223。en J, Scholz F. A generation of microbial fuel cell with current outputs boosted by more than one order of magnitude[J]. Angew Chem Int Ed., 2020, 115:2986?2989. [20] Harnisch F, Schro168。 der U, Quaas M, Scholz F. Electrocatalytic and corrosion behaviour of tungsten carbide in nearneutral pH electrolytes[J]. Appl Catal B: Environ., 2020, 87:63?69. [21] He Z, Kan J, Mansfeld F, Angenent L T, Nealson K H. Selfsustained phototrophic microbial fuel cells based on the synergistic cooperation between photosyntheticmicroanisms and heterotrophic bacteria[J]. Environ Sci Technol., 2020, 43:1648?1654. [22] Powell E E, Mapiour M L, Evitts R W, Hill G A. Growth kiics of Chlorella vulgaris and its use as a cathodic half cell[J]. Bioresour Technol., 2020, 100:269?274. [23] Powell ., Bolster ., Hill ., Evitts .. Complete Microbiological Fuel Cell: A Photosynthetic Cathode Coupled to a Fermentative Anode[J]. Energy Sources, June 2020a, Part A. 南京工業(yè)大學本科畢業(yè)論文 24 [24] Powell ., Majak ., Evitts ., Hill, .. Growth 658 kiics of Chlorella vulgaris and its use as a cathodic half cell[J]. 659 Bioresour Technol., 2020b, 100: 269–274. [25] Powell , Hill . Economic assessment of an integrated bioethanol–biodiesel–microbial fuel cell facility utilizing yeast and photosynthetic algae[J]. Chemical Engineering Research and Design, 2020, 87:1340–1348. [26] 葉曄捷,宋天順等,微生物燃料電池產(chǎn)電的影 響因素 [J],過程工程學報, 2020, 9( 3):526530 [27] 宋娟,趙華章等,微生物燃料電池陽極修飾的研究進展 [J],化學與生物工程, 2020,26( 7): 1618 [28] 黃霞,范志明等,微生物燃料電池陽極特性對產(chǎn)電性能的影響 [J],中國給水排水, 2020,23( 3): 813
點擊復制文檔內(nèi)容
黨政相關相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1