freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

20xx屆百校大聯(lián)考高三第六次大聯(lián)考數(shù)學(理)試題(解析版)-資料下載頁

2025-04-03 03:18本頁面
  

【正文】 時,一般需要聯(lián)立直線與橢圓方程,根據(jù)韋達定理,以及弦長公式,即可求出結果;有時也可由直線與橢圓方程聯(lián)立求出交點坐標,根據(jù)兩點間距離公式求出弦長.21.已知函數(shù).(1)討論的單調性。(2)若存在,使得成立,求實數(shù)的取值范圍,【答案】(1)答案見解析;(2).【分析】(1)應用導數(shù),結合分類討論的方法,確定的單調性即可;(2)由題意有存在使成立,應用導數(shù)判斷在上成立,進而問題轉化為存在,使得成立,構造,利用導數(shù)研究其在上的最值,只需即可求a的范圍.【詳解】(1)由解析式知:,當時,對任意的成立,即在上單調遞減;當時,在上單調遞減;在上單調遞增,當時,即在上單調遞增,在上單調遞減.由存在,使得成立,即存在使成立,令,有,∴時,單調減;時,單調增;而,且時,∴,即在上單調遞減,又,∴當時,∴問題可轉化為:存在,使得成立.設,則,若,則,∴上,單調遞減,而∴上,即當時,.∴在上單調遞增,而,∴當時,即,即的取值范圍是.【點睛】關鍵點點睛:對于第二問,首先利用導數(shù)判斷上的符號,再將問題轉化為,使得成立,最后構造函數(shù)應用導數(shù)研究其最值,只需保證成立即可求參數(shù)范圍.22.知在平面直角坐標系中,直線的參數(shù)方程是(是參數(shù)),以原點圓點。以軸的非負半軸為極軸,且取相同的單位長度建立極坐標系,曲線的極坐標方程為,(1)求直線的普通方程與曲線的直角坐標方程﹔(2)設為曲線上任意一點,求的取值范圍.【答案】(1),;(2).【分析】(1)由參數(shù)方程消去參數(shù),即可得直線的普通方程,利用直角坐標與極坐標的互化公式即可得曲線C的直角坐標方程;(2)先利用圓的參數(shù)方程得到,再利用輔助角公式以及三角函數(shù)的取值范圍求解即可.【詳解】解:(1)由直線的參數(shù)方程是,消可得:直線的普通方程為.由得,所以,故曲線的直角坐標方程為;(2)據(jù)(1)求解知曲線.令,則,,所以的取值范圍是.23.已知函數(shù).(1)求不等式的解集﹔(2)若對任意的成立,求實數(shù)的取值范圍.【答案】(1);(2).【分析】(1)由可得,解出即可;(2)求出的最大值即可.【詳解】(1), 即所求不等式的解集為.(2),又對任意的成立,則,解得故實數(shù)的取值范圍是.第 19 頁 共 19 頁
點擊復制文檔內容
畢業(yè)設計相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1