freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

最新八年級(jí)數(shù)學(xué)試卷易錯(cuò)易錯(cuò)壓軸勾股定理選擇題練習(xí)題(含答案)(11)-資料下載頁(yè)

2025-04-02 03:50本頁(yè)面
  

【正文】 S得到三角形BCE與三角形DCG全等,利用全等三角形對(duì)應(yīng)邊相等即可得到BE=DG,利用全等三角形對(duì)應(yīng)角相等得到∠CBM=∠MDO,利用等角的余角相等及直角的定義得到∠BOD為直角,利用勾股定理求出所求式子的值即可.詳解:①∵四邊形ABCD和EFGC都為正方形,∴CB=CD,CE=CG,∠BCD=∠ECG=90176。,∴∠BCD+∠DCE=∠ECG+∠DCE,即∠BCE=∠DCG.在△BCE和△DCG中,CB=CD,∠BCE=∠DCG,CE=CG,∴△BCE≌△DCG,∴BE=DG,故結(jié)論①正確.②如圖所示,設(shè)BE交DC于點(diǎn)M,交DG于點(diǎn)O.由①可知,△BCE≌△DCG,∴∠CBE=∠CDG,即∠CBM=∠MDO.又∵∠BMC=∠DMO,∠MCB=180176?!螩BM∠BMC,∠DOM=180176?!螩DG∠MDO,∴∠DOM=∠MCB=90176。,∴BE⊥DG.故②結(jié)論正確.③如圖所示,連接BD、EG,由②知,BE⊥DG,則在Rt△ODE中,DE2=OD2+OE2,在Rt△BOG中,BG2=OG2+OB2,在Rt△OBD中,BD2=OD2+OB2,在Rt△OEG中,EG2=OE2+OG2,∴DE2+BG2=(OD2+OE2)+(OB2+OG2)=(OD2+OB2)+(OE2+OG2)=BD2+EG2.在Rt△BCD中,BD2=BC2+CD2=2a2,在Rt△CEG中,EG2=CG2+CE2=2b2,∴BG2+DE2=2a2+2b2.故③結(jié)論正確.故選:D.點(diǎn)睛:本題考查了旋轉(zhuǎn)的性質(zhì)、全等三角形的判定與性質(zhì)、正方形的性質(zhì).25.C解析:C【分析】作出等邊三角形一邊上的高,利用直角三角形中,30176。角所對(duì)的直角邊等于斜邊的一半,得出BD,利用勾股定理即可求出AD,再利用三角形面積公式即可解決問(wèn)題.【詳解】解:如圖作AD⊥BC于點(diǎn)D.∵△ABC為等邊三角形,∴∠B=60176。,∠B AD=30176。∴ 由勾股定理得, ∴邊長(zhǎng)為a的等邊三角形的面積為aa=a2,故選:C.【點(diǎn)睛】本題考點(diǎn)涉及等邊三角形的性質(zhì)、含30176。角的直角三角形、勾股定理以及三角形面積公式,熟練掌握相關(guān)性質(zhì)定理是解題關(guān)鍵.26.C解析:C【分析】根據(jù)圖形翻折變換的性質(zhì)可知,AE=BE,設(shè)AE=x,則BE=x,CE=8x,再在Rt△BCE中利用勾股定理即可求出BE的長(zhǎng)度.【詳解】解:∵△ADE翻折后與△BDE完全重合,∴AE=BE,設(shè)AE=x,則BE=x,CE=8﹣x,在Rt△BCE中,BE2=BC2+CE2,即x2=62+(8﹣x)2,解得,x=,∴BE=.故選:C.【點(diǎn)睛】本題考查了圖形的翻折變換,解題過(guò)程中應(yīng)注意折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,根據(jù)軸對(duì)稱的性質(zhì),折疊前后圖形的形狀和大小不變.27.D解析:D【分析】根據(jù)三角形勾股定理的逆定理符合即為直角三角形 ,所以將數(shù)據(jù)分別代入,符合即為能構(gòu)成直角三角形.【詳解】由題意得:① ;② ;③ ,所以能構(gòu)成直角三角形的是②③.故選D.【點(diǎn)睛】考查直角三角形的構(gòu)成,學(xué)生熟悉掌握勾股定理的逆定理是本題解題的關(guān)鍵,利用勾股定理的逆定理判斷是否能夠成直角三角形.28.B解析:B【分析】如圖,作與E,利用勾股定理的逆定理證明,再利用面積法求出EC即可.【詳解】如圖,作與E.是的中線,BC=12,BD=6, ,故選B.【點(diǎn)睛】本題主要考查勾股定理的逆定理,三角形的面積等知識(shí),解題的關(guān)鍵是熟練掌握基本知識(shí),學(xué)會(huì)面積法求三角形的高.29.A解析:A【分析】設(shè)CF=x,則AC=x+2,再由已知條件得到AB=6,BC=6+x,再由AB2+AC2=BC2得到62+(x+2)2=(x+4)2,解方程即可.【詳解】設(shè)CF=x,則AC=x+2,∵正方形ADOF的邊長(zhǎng)是2,BD=4,△BDO≌△BEO,△CEO≌△CFO,∴BD=BE,CF=CE,AD=AF=2,∴AB=6,BC=6+x,∵∠A=90176。,∴AB2+AC2=BC2,∴62+(x+2)2=(x+4)2,解得:x=6,即CF=6,故選:A.【點(diǎn)睛】考查正方形的性質(zhì)、勾股定理,解題關(guān)鍵是設(shè)CF=x,則AC=x+2,利用勾股定理得到62+(x+2)2=(x+4)2.30.C解析:C【分析】設(shè),對(duì)應(yīng)的邊長(zhǎng)為,,根據(jù)題意,通過(guò)等邊三角形和勾股定理的性質(zhì),得,從而計(jì)算得到;設(shè),對(duì)應(yīng)的邊長(zhǎng)為,,通過(guò)圓形面積和勾股定理性質(zhì),得,從而計(jì)算得到,即可得到答案.【詳解】分別以直角三角形三邊為邊向外作等邊三角形,面積分別為,則,對(duì)應(yīng)的邊長(zhǎng)設(shè)為,根據(jù)題意得: ∴,∵ ∴∴以直角三角形三邊長(zhǎng)為直徑向外作半圓,面積分別為,則,對(duì)應(yīng)的邊長(zhǎng)設(shè)為,根據(jù)題意得:∴,∵∴∴∴故選:C.【點(diǎn)睛】本題考查了勾股定理、等邊三角形、圓形面積的知識(shí);解題的關(guān)鍵是熟練掌握勾股定理、等邊三角形面積計(jì)算的性質(zhì),從而完成求解
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1