freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

八年級數(shù)學(xué)試卷易錯(cuò)易錯(cuò)壓軸勾股定理選擇題專題練習(xí)(含答案)(10)-資料下載頁

2025-04-01 22:13本頁面
  

【正文】 容就解答本題的關(guān)鍵.20.D解析:D【解析】A選項(xiàng):32+42≠62,故不符合勾股定理的逆定理,不能組成直角三角形,故錯(cuò)誤;B選項(xiàng):52+62≠72,故不符合勾股定理的逆定理,不能組成直角三角形,故錯(cuò)誤;C選項(xiàng):62+82≠92,故不符合勾股定理的逆定理,不能組成直角三角形,故錯(cuò)誤;D選項(xiàng):72+242=252,故符合勾股定理的逆定理,能組成直角三角形,故正確.故選D.21.B解析:B【分析】首先根據(jù)題意得到BE=DE,然后根據(jù)勾股定理得到關(guān)于線段AB、AE、BE的方程,解方程即可解決問題.【詳解】解:設(shè)ED=x,則AE=6x,∵四邊形ABCD為矩形,∴AD∥BC,∴∠EDB=∠DBC;由題意得:∠EBD=∠DBC,∴∠EDB=∠EBD,∴EB=ED=x;由勾股定理得:BE2=AB2+AE2,即x2=9+(6x)2,解得:x=,∴ED=. 故選:B.【點(diǎn)睛】本題主要考查了幾何變換中的翻折變換及其應(yīng)用問題;解題的關(guān)鍵是根據(jù)翻折變換的性質(zhì),結(jié)合全等三角形的判定及其性質(zhì)、勾股定理等幾何知識,靈活進(jìn)行判斷、分析、推理或解答.22.B解析:B【分析】由數(shù)軸上點(diǎn)表示的數(shù)為,點(diǎn)表示的數(shù)為1,得PA=2,根據(jù)勾股定理得,進(jìn)而即可得到答案.【詳解】∵數(shù)軸上點(diǎn)表示的數(shù)為,點(diǎn)表示的數(shù)為1,∴PA=2,又∵l⊥PA, ∴,∵PB=PC=,∴數(shù)軸上點(diǎn)所表示的數(shù)為:.故選B.【點(diǎn)睛】本題主要考查數(shù)軸上點(diǎn)表示的數(shù)與勾股定理,掌握數(shù)軸上兩點(diǎn)之間的距離求法,是解題的關(guān)鍵.23.C解析:C【分析】,甲乙兩船航行的路程,進(jìn)而可根據(jù)勾股定理的逆定理得出乙船的航行方向與甲船的航行方向垂直,進(jìn)一步即可得出答案.【詳解】解:,甲船航行的路程是16=24海里,乙船航行的路程是12=18海里;∵,∴乙船的航行方向與甲船的航行方向垂直,∵甲船的航行方向是北偏東75176。,∴乙船的航行方向是南偏東15176?;虮逼?5176。.故選:C.【點(diǎn)睛】本題考查了勾股定理的逆定理和方位角,屬于??碱}型,正確理解題意、熟練掌握勾股定理的逆定理是解題的關(guān)鍵.24.D解析:D【分析】根據(jù)勾股定理求出AB的長,即為AC的長,再根據(jù)數(shù)軸上的點(diǎn)的表示解答.【詳解】由勾股定理得,∴∵點(diǎn)A表示的數(shù)是1∴點(diǎn)C表示的數(shù)是故選D.【點(diǎn)睛】本題考查了勾股定理、實(shí)數(shù)與數(shù)軸,熟記定理并求出AB的長是解題的關(guān)鍵.25.C解析:C【分析】根據(jù)題意結(jié)合勾股定理得出折斷處離地面的長度即可.【詳解】解:設(shè)折斷處離地面的高度OA是x尺,根據(jù)題意可得: x2+42=(10x)2,解得:x=,答:.故選C.【點(diǎn)睛】此題主要考查了勾股定理的應(yīng)用,根據(jù)題意正確應(yīng)用勾股定理是解題關(guān)鍵.26.C解析:C【分析】首先畫出圓柱的側(cè)面展開圖,進(jìn)而得到SC=12cm,F(xiàn)C=182=16cm,再利用勾股定理計(jì)算出SF長即可.【詳解】將圓柱的側(cè)面展開,蜘蛛到達(dá)目的地的最近距離為線段SF的長,由勾股定理,SF2=SC2+FC2=122+(1811)2=400,SF=20 cm,故選C.【點(diǎn)睛】本題考查了平面展開最短路徑問題,先根據(jù)題意把立體圖形展開成平面圖形后,再確定兩點(diǎn)之間的最短路徑.一般情況是兩點(diǎn)之間,線段最短.在平面圖形上構(gòu)造直角三角形解決問題.27.C解析:C【分析】首先由勾股定理求得AB=10,然后由翻折的性質(zhì)求得BE=4,設(shè)DC=,則BD=,在△BDE中,利用勾股定理列方程求解即可.【詳解】在Rt△ABC中,由勾股定理可知:AB=,由折疊的性質(zhì)可知:DC=DE,AC=AE=6,∠DEA=∠C=90176。,∴BE=ABAE=106=4,∠DEB=90176。,設(shè)DC=x,則BD=8x,DE=x,在Rt△BED中,由勾股定理得:BE2+DE2=BD2,即42+x2=(8x)2,解得:x=3,∴CD=3.故選:C.【點(diǎn)睛】本題主要考查了勾股定理與折疊問題,熟練掌握翻折的性質(zhì)和勾股定理是解決問題的關(guān)鍵.28.B解析:B【分析】“趙爽弦圖”是由四個(gè)全等的直角三角形和中間的小正方形拼成的一個(gè)大正方形.【詳解】“趙爽弦圖”是由四個(gè)全等的直角三角形和中間的小正方形拼成的一個(gè)大正方形,如圖所示:故選B.【點(diǎn)睛】本題主要考查了勾股定理的證明,證明勾股定理時(shí),用幾個(gè)全等的直角三角形拼成一個(gè)規(guī)則的圖形,然后利用大圖形的面積等于幾個(gè)小圖形的面積和化簡整理得到勾股定理.29.B解析:B【分析】如圖,作與E,利用勾股定理的逆定理證明,再利用面積法求出EC即可.【詳解】如圖,作與E.是的中線,BC=12,BD=6, ,故選B.【點(diǎn)睛】本題主要考查勾股定理的逆定理,三角形的面積等知識,解題的關(guān)鍵是熟練掌握基本知識,學(xué)會面積法求三角形的高.30.C解析:C【分析】設(shè),對應(yīng)的邊長為,,根據(jù)題意,通過等邊三角形和勾股定理的性質(zhì),得,從而計(jì)算得到;設(shè),對應(yīng)的邊長為,,通過圓形面積和勾股定理性質(zhì),得,從而計(jì)算得到,即可得到答案.【詳解】分別以直角三角形三邊為邊向外作等邊三角形,面積分別為,則,對應(yīng)的邊長設(shè)為,根據(jù)題意得: ∴,∵ ∴∴以直角三角形三邊長為直徑向外作半圓,面積分別為,則,對應(yīng)的邊長設(shè)為,根據(jù)題意得:∴,∵∴∴∴故選:C.【點(diǎn)睛】本題考查了勾股定理、等邊三角形、圓形面積的知識;解題的關(guān)鍵是熟練掌握勾股定理、等邊三角形面積計(jì)算的性質(zhì),從而完成求
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1