freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

九年級培優(yōu)易錯試卷二次函數(shù)輔導(dǎo)專題訓(xùn)練含答案-資料下載頁

2025-03-31 22:00本頁面
  

【正文】 比例式并解得:,∵,故,故拋物線的表達(dá)式為:;(3)如圖2,當(dāng)點C在x軸上方時,連接OD交BC于點H,則,過點H、D分別作x軸的垂線交于點N、M,設(shè):,,而,則,∴,則,則,則,則,則,解得:(舍去負(fù)值),解得:(不合題意值已舍去),故:.當(dāng)點C在x軸下方時,同理可得:;故:或【點睛】本題考查的是二次函數(shù)綜合運用、一次函數(shù)、三角形相似、圖形的面積計算,其中(3)用幾何方法得出:,是本題解題的關(guān)鍵.13.如圖①,拋物線與x軸交于A、B兩點(點A位于點B的左側(cè)),與y軸交于點C,已知的面積為6.(1)求的值;(2)求外接圓圓心的坐標(biāo);(3)如圖②,P是拋物線上一點,點Q為射線CA上一點,且P、Q兩點均在第三象限內(nèi),Q、A是位于直線BP同側(cè)的不同兩點,若點P到x軸的距離為d,的面積為,且,求點Q的坐標(biāo).【答案】(1)3;(2)坐標(biāo)(1,1);(3)Q.【解析】【分析】(1)利用拋物線解析式得到A、B、C三點坐標(biāo),然后利用三角形面積公式列出方程解出a;(2)利用第一問得到A、B、C三點坐標(biāo),求出AC解析式,找到AC垂直平分線的解析式,與AB垂直平分線解析式聯(lián)立,解出x、y即為圓心坐標(biāo);(3)過點P做PD⊥x軸,PD=d,發(fā)現(xiàn)△ABP與△QBP的面積相等,得到A、D兩點到PB得距離相等,可得,求出PB解析式,與二次函數(shù)解析式聯(lián)立得到P點坐標(biāo),又易證,得到BQ=AP=,設(shè)出Q點坐標(biāo),點與點的距離列出方程,解出Q點坐標(biāo)即可【詳解】(1)解:由題意得由圖知: 所以A(),,=6∴ (2)由(1)得A(),,∴直線AC得解析式為:AC中點坐標(biāo)為∴AC的垂直平分線為:又∵AB的垂直平分線為: ∴ 得 外接圓圓心的坐標(biāo)(1,1).(3)解:過點P做PD⊥x軸由題意得:PD=d,∴ =2d∵的面積為∴,即A、D兩點到PB得距離相等∴設(shè)PB直線解析式為。過點 ∴∴易得 所以P(4,5),由題意及易得:∴BQ=AP=設(shè)Q(m,1)()∴∴Q.【點睛】本題考查二次函數(shù)綜合性問題,涉及到一次函數(shù)、三角形外接圓圓心、全等三角形等知識點,第一問關(guān)鍵在于用a表示出A、B、C三點坐標(biāo);第二問關(guān)鍵在于找到AC垂直平分線的解析式,與AB垂直平分線解析式;第三問關(guān)鍵在于能夠求出PB的解析式14.已知拋物線C1:y=ax2﹣4ax﹣5(a>0).(1)當(dāng)a=1時,求拋物線與x軸的交點坐標(biāo)及對稱軸;(2)①試說明無論a為何值,拋物線C1一定經(jīng)過兩個定點,并求出這兩個定點的坐標(biāo);②將拋物線C1沿這兩個定點所在直線翻折,得到拋物線C2,直接寫出C2的表達(dá)式;(3)若(2)中拋物線C2的頂點到x軸的距離為2,求a的值.【答案】(1)(﹣1,0)或(5,0)(2)①(0,﹣5),(4,﹣5)②y=﹣ax2+4ax﹣5(3)a=或【解析】試題分析:(1)將a=1代入解析式,即可求得拋物線與x軸交點;(2)①化簡拋物線解析式,即可求得兩個點定點的橫坐標(biāo),即可解題; ②根據(jù)拋物線翻折理論即可解題;(3)根據(jù)(2)中拋物線C2解析式,分類討論y=2或﹣2,即可解題試題解析:(1)當(dāng)a=1時,拋物線解析式為y=x2﹣4x﹣5=(x﹣2)2﹣9,∴對稱軸為y=2;∴當(dāng)y=0時,x﹣2=3或﹣3,即x=﹣1或5;∴拋物線與x軸的交點坐標(biāo)為(﹣1,0)或(5,0);(2)①拋物線C1解析式為:y=ax2﹣4ax﹣5,整理得:y=ax(x﹣4)﹣5;∵當(dāng)ax(x﹣4)=0時,y恒定為﹣5;∴拋物線C1一定經(jīng)過兩個定點(0,﹣5),(4,﹣5);②這兩個點連線為y=﹣5;將拋物線C1沿y=﹣5翻折,得到拋物線C2,開口方向變了,但是對稱軸沒變;∴拋物線C2解析式為:y=﹣ax2+4ax﹣5,(3)拋物線C2的頂點到x軸的距離為2,則x=2時,y=2或者﹣2;當(dāng)y=2時,2=﹣4a+8a﹣5,解得,a=;當(dāng)y=﹣2時,﹣2=﹣4a+8a﹣5,解得,a=;∴a=或;考點:拋物線與x軸的交點;二次函數(shù)圖象與幾何變換15.如圖,已知拋物線(a≠0)經(jīng)過A(﹣1,0)、B(3,0)、C(0,﹣3)三點,直線l是拋物線的對稱軸.(1)求拋物線的函數(shù)關(guān)系式;(2)設(shè)點P是直線l上的一個動點,當(dāng)點P到點A、點B的距離之和最短時,求點P的坐標(biāo);(3)點M也是直線l上的動點,且△MAC為等腰三角形,請直接寫出所有符合條件的點M的坐標(biāo).【答案】(1);(2)P(1,0);(3).【解析】試題分析:(1)直接將A、B、C三點坐標(biāo)代入拋物線的解析式中求出待定系數(shù)即可;(2)由圖知:A.B點關(guān)于拋物線的對稱軸對稱,那么根據(jù)拋物線的對稱性以及兩點之間線段最短可知,直線l與x軸的交點,即為符合條件的P點;(3)由于△MAC的腰和底沒有明確,因此要分三種情況來討論:①MA=AC、②MA=MC、③AC=MC;可先設(shè)出M點的坐標(biāo),然后用M點縱坐標(biāo)表示△MAC的三邊長,再按上面的三種情況列式求解.試題解析:(1)將A(﹣1,0)、B(3,0)、C(0,﹣3)代入拋物線中,得:,解得:,故拋物線的解析式:.(2)當(dāng)P點在x軸上,P,A,B三點在一條直線上時,點P到點A、點B的距離之和最短,此時x==1,故P(1,0);(3)如圖所示:拋物線的對稱軸為:x==1,設(shè)M(1,m),已知A(﹣1,0)、C(0,﹣3),則:=,==,=10;①若MA=MC,則,得:=,解得:m=﹣1;②若MA=AC,則,得:=10,得:m=;③若MC=AC,則,得:=10,得:,;當(dāng)m=﹣6時,M、A、C三點共線,構(gòu)不成三角形,不合題意,故舍去;綜上可知,符合條件的M點,且坐標(biāo)為 M(1,)(1,)(1,﹣1)(1,0).考點:二次函數(shù)綜合題;分類討論;綜合題;動點型.
點擊復(fù)制文檔內(nèi)容
合同協(xié)議相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1