freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

中考數(shù)學(xué)(二次函數(shù)提高練習(xí)題)壓軸題訓(xùn)練含答案解析-資料下載頁

2025-03-31 07:28本頁面
  

【正文】 當(dāng)點(diǎn)M在拋物線在x軸下方時(shí),N的縱坐標(biāo)總大于M的縱坐標(biāo)。∴?!郙N的最大值是。(3)當(dāng)MN取得最大值時(shí),N。∵的對稱軸是,B(5,0),∴A(1,0)?!郃B=4?!唷S晒垂啥ɡ砜傻?。設(shè)BC與PQ的距離為h,則由S1=6S2得:,即。如圖,過點(diǎn)B作平行四邊形CBPQ的高BH,過點(diǎn)H作x軸的垂線交點(diǎn)E ,則BH=,EH是直線BC沿y軸方向平移的距離。易得,△BEH是等腰直角三角形,∴EH=。∴直線BC沿y軸方向平移6個(gè)單位得PQ的解析式:或。當(dāng)時(shí),與聯(lián)立,得,解得或。此時(shí),點(diǎn)P的坐標(biāo)為(-1,12)或(6,5)。當(dāng)時(shí),與聯(lián)立,得,解得或。此時(shí),點(diǎn)P的坐標(biāo)為(2,-3)或(3,-4)。綜上所述,點(diǎn)P的坐標(biāo)為(-1,12)或(6,5)或(2,-3)或(3,-4)。13.如圖,拋物線與x軸交于點(diǎn)A(,0)、點(diǎn)B(2,0),與y軸交于點(diǎn)C(0,1),連接BC.(1)求拋物線的函數(shù)關(guān)系式;(2)點(diǎn)N為拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)N作NP⊥x軸于點(diǎn)P,設(shè)點(diǎn)N的橫坐標(biāo)為t(),求△ABN的面積S與t的函數(shù)關(guān)系式;(3)若且時(shí)△OPN∽△COB,求點(diǎn)N的坐標(biāo).【答案】(1);(2);(3)(,)或(1,2).【解析】試題分析:(1)可設(shè)拋物線的解析式為,用待定系數(shù)法就可得到結(jié)論;(2)當(dāng)時(shí),點(diǎn)N在x軸的上方,則NP等于點(diǎn)N的縱坐標(biāo),只需求出AB,就可得到S與t的函數(shù)關(guān)系式;(3)由相似三角形的性質(zhì)可得PN=2PO.而PO=,需分和0<t<2兩種情況討論,由PN=2PO得到關(guān)于t的方程,解這個(gè)方程,就可得到答案.試題解析:(1)設(shè)拋物線的解析式為,把C(0,1)代入可得:,∴,∴拋物線的函數(shù)關(guān)系式為:,即;(2)當(dāng)時(shí),>0,∴NP===,∴S=AB?PN==;(3)∵△OPN∽△COB,∴,∴,∴PN=2PO.①當(dāng)時(shí),PN===,PO==,∴,整理得:,解得:=,=,∵>0,<<0,∴t=,此時(shí)點(diǎn)N的坐標(biāo)為(,);②當(dāng)0<t<2時(shí),PN===,PO==t,∴,整理得:,解得:=,=1.∵<0,0<1<2,∴t=1,此時(shí)點(diǎn)N的坐標(biāo)為(1,2).綜上所述:點(diǎn)N的坐標(biāo)為(,)或(1,2).考點(diǎn):1.二次函數(shù)綜合題;2.待定系數(shù)法求二次函數(shù)解析式;3.相似三角形的性質(zhì).14.(本小題滿分12分)如圖,在平面直角坐標(biāo)系xOy中,拋物線()與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),經(jīng)過點(diǎn)A的直線l:與y軸負(fù)半軸交于點(diǎn)C,與拋物線的另一個(gè)交點(diǎn)為D,且CD=4AC.(1)直接寫出點(diǎn)A的坐標(biāo),并求直線l的函數(shù)表達(dá)式(其中k,b用含a的式子表示);(2)點(diǎn)E是直線l上方的拋物線上的動(dòng)點(diǎn),若△ACE的面積的最大值為,求a的值;(3)設(shè)P是拋物線的對稱軸上的一點(diǎn),點(diǎn)Q在拋物線上,以點(diǎn)A,D,P,Q為頂點(diǎn)的四邊形能否成為矩形?若能,求出點(diǎn)P的坐標(biāo);若不能,請說明理由.【答案】(1)A(-1,0),;(2);(3)P的坐標(biāo)為(1,)或(1,-4).【解析】試題分析:(1)在中,令y=0,得到,得到A(-1,0),B(3,0),由直線l經(jīng)過點(diǎn)A,得到,故,令,即,由于CD=4AC,故點(diǎn)D的橫坐標(biāo)為4,即有,得到,從而得出直線l的函數(shù)表達(dá)式;(2)過點(diǎn)E作EF∥y軸,交直線l于點(diǎn)F,設(shè)E(,),則F(,),EF==,S△ACE=S△AFE-S△CFE==,故△ACE的面積的最大值為,而△ACE的面積的最大值為,所以 ,解得;(3)令,即,解得,得到D(4,5a),因?yàn)閽佄锞€的對稱軸為,設(shè)P(1,m),然后分兩種情況討論:①若AD是矩形的一條邊,②若AD是矩形的一條對角線.試題解析:(1)∵=,令y=0,得到,∴A(-1,0),B(3,0),∵直線l經(jīng)過點(diǎn)A,∴,∴,令,即,∵CD=4AC,∴點(diǎn)D的橫坐標(biāo)為4,∴,∴,∴直線l的函數(shù)表達(dá)式為;(2)過點(diǎn)E作EF∥y軸,交直線l于點(diǎn)F,設(shè)E(,),則F(,),EF==,S△ACE=S△AFE-S△CFE= ==,∴△ACE的面積的最大值為,∵△ACE的面積的最大值為,∴ ,解得;(3)令,即,解得,∴D(4,5a),∵,∴拋物線的對稱軸為,設(shè)P(1,m),①若AD是矩形的一條邊,則Q(-4,21a),m=21a+5a=26a,則P(1,26a),∵四邊形ADPQ為矩形,∴∠ADP=90176。,∴,∴,即 ,∵,∴,∴P1(1,);②若AD是矩形的一條對角線,則線段AD的中點(diǎn)坐標(biāo)為( ,),Q(2,),m=,則P(1,8a),∵四邊形APDQ為矩形,∴∠APD=90176。,∴,∴,即 ,∵,∴,∴P2(1,-4).綜上所述,以點(diǎn)A、D、P、Q為頂點(diǎn)的四邊形能成為矩形,點(diǎn)P的坐標(biāo)為(1,)或(1,-4).考點(diǎn):二次函數(shù)綜合題.15.拋物線y=x2+bx+c與x軸交于A(1,0),B(m,0),與y軸交于C.(1)若m=﹣3,求拋物線的解析式,并寫出拋物線的對稱軸;(2)如圖1,在(1)的條件下,設(shè)拋物線的對稱軸交x軸于D,在對稱軸左側(cè)的拋物線上有一點(diǎn)E,使S△ACE=S△ACD,求點(diǎn)E的坐標(biāo);(3)如圖2,設(shè)F(﹣1,﹣4),F(xiàn)G⊥y于G,在線段OG上是否存在點(diǎn)P,使∠OBP=∠FPG?若存在,求m的取值范圍;若不存在,請說明理由.【答案】(1)拋物線的解析式為:y=x2+2x﹣3=(x+1)2﹣4;對稱軸是:直線x=﹣1;(2)點(diǎn)E的坐標(biāo)為E(﹣4,5)(3)當(dāng)﹣4≤m<0或m=3時(shí),在線段OG上存在點(diǎn)P,使∠OBP=∠FPG.【解析】試題分析:(1)利用待定系數(shù)法求二次函數(shù)的解析式,并配方求對稱軸;(2)如圖1,設(shè)E(m,m2+2m﹣3),先根據(jù)已知條件求S△ACE=10,根據(jù)不規(guī)則三角形面積等于鉛直高度與水平寬度的積列式可求得m的值,并根據(jù)在對稱軸左側(cè)的拋物線上有一點(diǎn)E,則點(diǎn)E的橫坐標(biāo)小于﹣1,對m的值進(jìn)行取舍,得到E的坐標(biāo);(3)分兩種情況:①當(dāng)B在原點(diǎn)的左側(cè)時(shí),構(gòu)建輔助圓,根據(jù)直徑所對的圓周角是直角,只要滿足∠BPF=90176。就可以構(gòu)成∠OBP=∠FPG,如圖2,求出圓E與y軸有一個(gè)交點(diǎn)時(shí)的m值,則可得取值范圍;②當(dāng)B在原點(diǎn)的右側(cè)時(shí),只有△OBP是等腰直角三角形,△FPG也是等腰直角三角形時(shí)滿足條件,直接計(jì)算即可.試題解析:(1)當(dāng)m=﹣3時(shí),B(﹣3,0),把A(1,0),B(﹣3,0)代入到拋物線y=x2+bx+c中得:,解得,∴拋物線的解析式為:y=x2+2x﹣3=(x+1)2﹣4;對稱軸是:直線x=﹣1;(2)如圖1,設(shè)E(m,m2+2m﹣3),由題意得:AD=1+1=2,OC=3,S△ACE=S△ACD=ADOC=23=10,設(shè)直線AE的解析式為:y=kx+b,把A(1,0)和E(m,m2+2m﹣3)代入得,解得:,∴直線AE的解析式為:y=(m+3)x﹣m﹣3,∴F(0,﹣m﹣3),∵C(0,﹣3),∴FC=﹣m﹣3+3=﹣m,∴S△ACE=FC(1﹣m)=10,﹣m(1﹣m)=20,m2﹣m﹣20=0,(m+4)(m﹣5)=0,m1=﹣4,m2=5(舍),∴E(﹣4,5);(3)如圖2,當(dāng)B在原點(diǎn)的左側(cè)時(shí),連接BF,以BF為直徑作圓E,當(dāng)⊙E與y軸相切時(shí),設(shè)切點(diǎn)為P,∴∠BPF=90176。,∴∠FPG+∠OPB=90176。,∵∠OPB+∠OBP=90176。,∴∠OBP=∠FPG,連接EP,則EP⊥OG,∵BE=EF,∴EP是梯形的中位線,∴OP=PG=2,∵FG=1,tan∠FPG=tan∠OBP=,∴,∴m=﹣4,∴當(dāng)﹣4≤m<0時(shí),在線段OG上存在點(diǎn)P,使∠OBP=∠FPG;如圖3,當(dāng)B在原點(diǎn)的右側(cè)時(shí),要想滿足∠OBP=∠FPG,則∠OBP=∠OPB=∠FPG,∴OB=OP,∴△OBP是等腰直角三角形,△FPG也是等腰直角三角形,∴FG=PG=1,∴OB=OP=3,∴m=3,綜上所述,當(dāng)﹣4≤m<0或m=3時(shí),在線段OG上存在點(diǎn)P,使∠OBP=∠FPG.考點(diǎn):二次函數(shù)的綜合題.
點(diǎn)擊復(fù)制文檔內(nèi)容
公司管理相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1