freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx中考數(shù)學平行四邊形綜合題附答案解析-資料下載頁

2025-03-30 22:21本頁面
  

【正文】 1)由折疊的性質(zhì)和垂直平分線的性質(zhì)得出PB=PC,PB=CB,得出PB=PC=CB即可;(2)①利用“HL”證Rt△IHM≌Rt△IJN即可得;②IJ上取一點Q,使QI=QN,由Rt△IHM≌Rt△IJN知∠HIM=∠JIN=15176。,繼而可得∠NQJ=30176。,設NJ=x,則IQ=QN=2x、QJ=x,根據(jù)IJ=IQ+QJ求出x即可得;(3)由等邊三角形的性質(zhì)、直角三角形的性質(zhì)、勾股定理進行計算,畫出圖形即可.(1)證明:∵①對折矩形紙片ABCD(ABBC),使AB與DC重合,得到折痕EF∴PB=PC∵沿折痕BG折疊紙片,使點C落在EF上的點P處∴PB=BC∴PB=PC=BC∴△PBC是正三角形:(2)證明:①如圖∵矩形AHIJ∴∠H=∠J=90176?!摺鱉NJ是等邊三角形∴MI=NI在Rt△MHI和Rt△JNI中 ∴Rt△MHI≌Rt△JNI(HL)∴HI=IJ②在線段IJ上取點Q,使IQ=NQ∵Rt△IHM≌Rt△IJN,∴∠HIM=∠JIN,∵∠HIJ=90176。、∠MIN=60176。,∴∠HIM=∠JIN=15176。,由QI=QN知∠JIN=∠QNI=15176。,∴∠NQJ=30176。,設NJ=x,則IQ=QN=2x,QJ=x,∵IJ=6cm,∴2x+x=6,∴x=126,即NJ=126(cm).(3)分三種情況:①如圖:設等邊三角形的邊長為b,則0<b≤6,則tan60176。=,∴a=,∴0<b≤=;②如圖當DF與DC重合時,DF=DE=6,∴a=sin60176。DE==,當DE與DA重合時,a=,∴<a<;③如圖∵△DEF是等邊三角形∴∠FDC=30176?!郉F=∴a>點睛:本題是四邊形的綜合題目,考查了折疊的性質(zhì)、等邊三角形的判定與性質(zhì)、旋轉的性質(zhì)、直角三角形的性質(zhì)、正方形的性質(zhì)、全等三角形的判定與性質(zhì)等知識;本題綜合性強,難度較大.14.已知點O是△ABC內(nèi)任意一點,連接OA并延長到E,使得AE=OA,以OB,OC為鄰邊作?OBFC,連接OF與BC交于點H,再連接EF.(1)如圖1,若△ABC為等邊三角形,求證:①EF⊥BC;②EF=BC;(2)如圖2,若△ABC為等腰直角三角形(BC為斜邊),猜想(1)中的兩個結論是否成立?若成立,直接寫出結論即可;若不成立,請你直接寫出你的猜想結果;(3)如圖3,若△ABC是等腰三角形,且AB=AC=kBC,請你直接寫出EF與BC之間的數(shù)量關系.【答案】(1)見解析;(2)EF⊥BC仍然成立;(3)EF=BC【解析】試題分析:(1)由平行四邊形的性質(zhì)得到BH=HC=BC,OH=HF,再由等邊三角形的性質(zhì)得到AB=BC,AH⊥BC,根據(jù)勾股定理得到AH=BC,即可;(2)由平行四邊形的性質(zhì)得到BH=HC=BC,OH=HF,再由等腰直角三角形的性質(zhì)得到AB=BC,AH⊥BC,根據(jù)勾股定理得到AH=BC,即可;(3)由平行四邊形的性質(zhì)得到BH=HC=BC,OH=HF,再由等腰三角形的性質(zhì)和AB=AC=kBC得到AB=BC,AH⊥BC,根據(jù)勾股定理得到AH=BC,即可.試題解析:(1)連接AH,如圖1,∵四邊形OBFC是平行四邊形,∴BH=HC=BC,OH=HF,∵△ABC是等邊三角形,∴AB=BC,AH⊥BC,在Rt△ABH中,AH2=AB2﹣BH2,∴AH==BC,∵OA=AE,OH=HF,∴AH是△OEF的中位線,∴AH=EF,AH∥EF,∴EF⊥BC,BC=EF,∴EF⊥BC,EF=BC;(2)EF⊥BC仍然成立,EF=BC,如圖2,∵四邊形OBFC是平行四邊形,∴BH=HC=BC,OH=HF,∵△ABC是等腰三角形,∴AB=BC,AH⊥BC,在Rt△ABH中,AH2=AB2﹣BH2=(BH)2﹣BH2=BH2,∴AH=BH=BC,∵OA=AE,OH=HF,∴AH是△OEF的中位線,∴AH=EF,AH∥EF,∴EF⊥BC,BC=EF,∴EF⊥BC,EF=BC;(3)如圖3,∵四邊形OBFC是平行四邊形,∴BH=HC=BC,OH=HF,∵△ABC是等腰三角形,∴AB=kBC,AH⊥BC,在Rt△ABH中,AH2=AB2﹣BH2=(kBC)2﹣(BC)2=(k2)BC2,∴AH=BH=BC,∵OA=AE,OH=HF,∴AH是△OEF的中位線,∴AH=EF,AH∥EF,∴EF⊥BC,BC=EF,∴EF=BC.考點:四邊形綜合題.15.已知一次函數(shù)y=x+3的圖象與x軸、y軸分別交于A、B兩點,以線段AB為直角邊在第二象限內(nèi)左等腰直角三角形ABC,∠BAC=90176。,如圖1所示.(1)填空:AB= ,BC= .(2)將△ABC繞點B逆時針旋轉,①當AC與x軸平行時,則點A的坐標是②當旋轉角為90176。時,得到△BDE,如圖2所示,求過B、D兩點直線的函數(shù)關系式.③在②的條件下,旋轉過程中AC掃過的圖形的面積是多少?(3)將△ABC向右平移到△A′B′C′的位置,點C′為直線AB上的一點,請直接寫出△ABC掃過的圖形的面積.【答案】(1):5;5;(2)①(0,﹣2);②直線BD的解析式為y=﹣x+3;③S=π;(3)△ABC掃過的面積為.【解析】試題分析:(1)根據(jù)坐標軸上的點的坐標特征,結合一次函數(shù)的解析式求出A、B兩點的坐標,利用勾股定理即可解答;(2)①因為B(0,3),所以OB=3,所以AB=5,所以AO=ABBO=53=2,所以A(0,2);②過點C作CF⊥OA與點F,證明△AOB≌△CFA,得到點C的坐標,求出直線AC解析式,根據(jù)AC∥BD,所以直線BD的解析式的k值與直線AC的解析式k值相同,設出解析式,即可解答.③利用旋轉的性質(zhì)進而得出A,B,C對應點位置進而得出答案,再利用以BC為半徑90176。圓心角的扇形面積減去以AB為半徑90176。圓心角的扇形面積求出答案;(3)利用平移的性質(zhì)進而得出△ABC掃過的圖形是平行四邊形的面積.試題解析:(1)∵一次函數(shù)y=x+3的圖象與x軸、y軸分別交于A、B兩點,∴A(4,0),B(0,3),∴AO=4,BO=3,在Rt△AOB中,AB=,∵等腰直角三角形ABC,∠BAC=90176。,∴BC=;(2)①如圖1,∵B(0,3),∴OB=3,∵AB=5,∴AO=ABBO=53=2,∴A(0,2).當在x軸上方時,點A的坐標為(0,8),②如圖2,過點C作CF⊥OA與點F,∵△ABC為等腰直角三角形,∴∠BAC=90176。,AB=AC,∴∠BAO+∠CAF=90176。,∵∠OBA+∠BAO=90176。,∴∠CAF=∠OBA,在△AOB和△CFA中,∴△AOB≌△CFA(AAS);∴OA=CF=4,OB=AF=3,∴OF=7,CF=4,∴C(7,4)∵A(4,0)設直線AC解析式為y=kx+b,將A與C坐標代入得:,解得:,則直線AC解析式為y=x,∵將△ABC繞點B逆時針旋轉,當旋轉角為90176。時,得到△BDE,∴∠ABD=90176。,∵∠CAB=90176。,∴∠ABD=∠CAB=90176。,∴AC∥BD,∴設直線BD的解析式為y=x+b1,把B(0,3)代入解析式的:b1=3,∴直線BD的解析式為y=x+3;③因為旋轉過程中AC掃過的圖形是以BC為半徑90176。圓心角的扇形面積減去以AB為半徑90176。圓心角的扇形面積,所以可得:S=;(3)將△ABC向右平移到△A′B′C′的位置,△ABC掃過的圖形是一個平行四邊形和三角形ABC,如圖3:將C點的縱坐標代入一次函數(shù)y=x+3,求得C′的橫坐標為,平行四邊CAA′C′的面積為(7+)4=,三角形ABC的面積為55=△ABC掃過的面積為:.考點:幾何變換綜合題.
點擊復制文檔內(nèi)容
職業(yè)教育相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1