【正文】
時(shí),仍有EF=BE+DF;(3)聯(lián)想拓展如圖3,在△ABC中,∠BAC=90176。,AB=AC,點(diǎn)D、E均在邊BC上,且∠DAE=45176。,猜想BD、DE、EC滿足的等量關(guān)系,并寫出推理過程?!敬鸢浮浚?)詳見解析;(2)詳見解析;(3)詳見解析.【解析】試題分析:(1)把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90176。至△ADG,可使AB與AD重合,證出△AFG≌△AFE,根據(jù)全等三角形的性質(zhì)得出EF=FG,即可得出答案;(2)把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90176。至△ADG,可使AB與AD重合,證出△AFE≌△AFG,根據(jù)全等三角形的性質(zhì)得出EF=FG,即可得出答案;(3)把△ACE旋轉(zhuǎn)到ABF的位置,連接DF,證明△AFE≌△AFG(SAS),則EF=FG,∠C=∠ABF=45176。,△BDF是直角三角形,根據(jù)勾股定理即可作出判斷.試題解析:(1)理由是:如圖1,∵AB=AD,∴把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合,如圖1,∵∠ADC=∠B=90°,∴∠FDG=180°,點(diǎn)F. D. G共線,則∠DAG=∠BAE,AE=AG,∠FAG=∠FAD+∠GAD=∠FAD+∠BAE=90°?45°=45°=∠EAF,即∠EAF=∠FAG,在△EAF和△GAF中,AF=AF,∠EAF=∠GAF,AE=AG,∴△AFG≌△AFE(SAS),∴EF=FG=BE+DF;(2)∠B+∠D=180°時(shí),EF=BE+DF;∵AB=AD,∴把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合,如圖2,∴∠BAE=∠DAG,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠EAF=∠FAG,∵∠ADC+∠B=180°,∴∠FDG=180°,點(diǎn)F. D. G共線,在△AFE和△AFG中,AE=AG,∠FAE=∠FAG,AF=AF,∴△AFE≌△AFG(SAS),∴EF=FG,即:EF=BE+DF,故答案為:∠B+∠ADC=180°;(3)BD2+CE2=DE2.理由是:把△ACE旋轉(zhuǎn)到ABF的位置,連接DF,則∠FAB=∠CAE.∵∠BAC=90°,∠DAE=45°,∴∠BAD+∠CAE=45°,又∵∠FAB=∠CAE,∴∠FAD=∠DAE=45°,則在△ADF和△ADE中,AD=AD,∠FAD=∠DAE,AF=AE,∴△ADF≌△ADE,∴DF=DE,∠C=∠ABF=45°,∴∠BDF=90°,∴△BDF是直角三角形,∴BD2+BF2=DF2,∴BD2+CE2=DE2.14.如圖,P是邊長為1的正方形ABCD對(duì)角線BD上一動(dòng)點(diǎn)(P與B、D不重合),∠APE=90176。,且點(diǎn)E在BC邊上,AE交BD于點(diǎn)F.(1)求證:①△PAB≌△PCB;②PE=PC;(2)在點(diǎn)P的運(yùn)動(dòng)過程中,的值是否改變?若不變,求出它的值;若改變,請(qǐng)說明理由;(3)設(shè)DP=x,當(dāng)x為何值時(shí),AE∥PC,并判斷此時(shí)四邊形PAFC的形狀.【答案】(1)見解析;(2);(3)x=﹣1;四邊形PAFC是菱形.【解析】試題分析:(1)根據(jù)四邊形ABCD是正方形,得出AB=BC,∠ABP=∠CBP176。,再根據(jù)PB=PB,即可證出△PAB≌△PCB,②根據(jù)∠PAB+∠PEB=180176。,∠PEC+∠PEB=180176。,得出∠PEC=∠PCB,從而證出PE=PC;(2)根據(jù)PA=PC,PE=PC,得出PA=PE,再根據(jù)∠APE=90176。,得出∠PAE=∠PEA=45176。,即可求出;(3)先求出∠CPE=∠PEA=45176。,從而得出∠PCE,再求出∠BPC即可得出∠BPC=∠PCE,從而證出BP=BC=1,x=﹣1,再根據(jù)AE∥PC,得出∠AFP=∠BPC=176。,由△PAB≌△PCB得出∠BPA=∠BPC=176。,PA=PC,從而證出AF=AP=PC,得出答案.試題解析:(1)①∵四邊形ABCD是正方形,∴AB=BC,∠ABP=∠CBP=∠ABC=45176。.∵PB=PB,∴△PAB≌△PCB (SAS).②由△PAB≌△PCB可知,∠PAB=∠PCB.∵∠ABE=∠APE=90176。,∴∠PAB+∠PEB=180176。,又∵∠PEC+∠PEB=180176。,∴∠PEC=∠PAB=∠PCB,∴PE=PC.(2)在點(diǎn)P的運(yùn)動(dòng)過程中,的值不改變.由△PAB≌△PCB可知,PA=PC.∵PE=PC,∴PA=PE,又∵∠APE=90176。,∴△PAE是等腰直角三角形,∠PAE=∠PEA=45176。,∴=.(3)∵AE∥PC,∴∠CPE=∠PEA=45176。,∴在△PEC中,∠PCE=∠PEC=(180176。﹣45176。)=176。.在△PBC中,∠BPC=(180176。﹣∠CBP﹣∠PCE)=(180176。﹣45176。﹣176。)=176。.∴∠BPC=∠PCE=176。,∴BP=BC=1,∴x=BD﹣BP=﹣1.∵AE∥PC,∴∠AFP=∠BPC=176。,由△PAB≌△PCB可知,∠BPA=∠BPC=176。,PA=PC,∴∠AFP=∠BPA,∴AF=AP=PC,∴四邊形PAFC是菱形.考點(diǎn):四邊形綜合題.15.如圖,現(xiàn)有一張邊長為4的正方形紙片ABCD,點(diǎn)P為正方形AD邊上的一點(diǎn)(不與點(diǎn)A、點(diǎn)D重合),將正方形紙片折疊,使點(diǎn)B落在P處,點(diǎn)C落在G處,PG交DC于H,折痕為EF,連接BP、BH.(1)求證:∠APB=∠BPH;(2)當(dāng)點(diǎn)P在邊AD上移動(dòng)時(shí),求證:△PDH的周長是定值;(3)當(dāng)BE+CF的長取最小值時(shí),求AP的長.【答案】(1)證明見解析.(2)證明見解析.(3)2.【解析】試題分析:(1)根據(jù)翻折變換的性質(zhì)得出∠PBC=∠BPH,進(jìn)而利用平行線的性質(zhì)得出∠APB=∠PBC即可得出答案;(2)首先證明△ABP≌△QBP,進(jìn)而得出△BCH≌△BQH,即可得出PD+DH+PH=AP+PD+DH+HC=AD+CD=8;(3)過F作FM⊥AB,垂足為M,則FM=BC=AB,證明△EFM≌△BPA,設(shè)AP=x,利用折疊的性質(zhì)和勾股定理的知識(shí)用x表示出BE和CF,結(jié)合二次函數(shù)的性質(zhì)求出最值.試題解析:(1)解:如圖1,∵PE=BE,∴∠EBP=∠EPB.又∵∠EPH=∠EBC=90176。,∴∠EPH∠EPB=∠EBC∠EBP.即∠PBC=∠BPH.又∵AD∥BC,∴∠APB=∠PBC.∴∠APB=∠BPH.(2)證明:如圖2,過B作BQ⊥PH,垂足為Q.由(1)知∠APB=∠BPH,又∵∠A=∠BQP=90176。,BP=BP,在△ABP和△QBP中,∴△ABP≌△QBP(AAS),∴AP=QP,AB=BQ,又∵AB=BC,∴BC=BQ.又∠C=∠BQH=90176。,BH=BH,在△BCH和△BQH中,∴△BCH≌△BQH(SAS),∴CH=QH.∴△PHD的周長為:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.∴△PDH的周長是定值.(3)解:如圖3,過F作FM⊥AB,垂足為M,則FM=BC=AB.又∵EF為折痕,∴EF⊥BP.∴∠EFM+∠MEF=∠ABP+∠BEF=90176。,∴∠EFM=∠ABP.又∵∠A=∠EMF=90176。,在△EFM和△BPA中,∴△EFM≌△BPA(AAS). ∴EM=AP.設(shè)AP=x在Rt△APE中,(4BE)2+x2=BE2.解得BE=2+,∴CF=BEEM=2+x,∴BE+CF=x+4=(x2)2+3.當(dāng)x=2時(shí),BE+CF取最小值,∴AP=2.考點(diǎn):幾何變換綜合題.