freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx中考數(shù)學(xué)-二次函數(shù)-培優(yōu)-易錯-難題練習(xí)(含答案)含答案-資料下載頁

2025-03-30 22:20本頁面
  

【正文】 數(shù)的綜合題,涉及到待定系數(shù)法、二次函數(shù)的最值、等腰三角形等知識,綜合性較強(qiáng),解題的關(guān)鍵是認(rèn)真分析,弄清解題的思路有方法.13.在平面直角坐標(biāo)系中,拋物線與x軸交于A,B兩點(A在B的左側(cè)),與y軸交于點C,頂點為D.(1)請直接寫出點A,C,D的坐標(biāo);(2)如圖(1),在x軸上找一點E,使得△CDE的周長最小,求點E的坐標(biāo);(3)如圖(2),F(xiàn)為直線AC上的動點,在拋物線上是否存在點P,使得△AFP為等腰直角三角形?若存在,求出點P的坐標(biāo),若不存在,請說明理由.【答案】(1)A(﹣3,0),C(0,3),D(﹣1,4);(2)E(,0);(3)P(2,﹣5)或(1,0).【解析】試題分析:(1)令拋物線解析式中y=0,解關(guān)于x的一元二次方程即可得出點A、B的坐標(biāo),再令拋物線解析式中x=0求出y值即可得出點C坐標(biāo),利用配方法將拋物線解析式配方即可找出頂點D的坐標(biāo);(2)作點C關(guān)于x軸對稱的點C′,連接C′D交x軸于點E,此時△CDE的周長最小,由點C的坐標(biāo)可找出點C′的坐標(biāo),根據(jù)點C′、D的坐標(biāo)利用待定系數(shù)法即可求出直線C′D的解析式,令其y=0求出x值,即可得出點E的坐標(biāo);(3)根據(jù)點A、C的坐標(biāo)利用待定系數(shù)法求出直線AC的解析式,假設(shè)存在,設(shè)點F(m,m+3),分∠PAF=90176。、∠AFP=90176。和∠APF=90176。三種情況考慮.根據(jù)等腰直角三角形的性質(zhì)結(jié)合點A、F點的坐標(biāo)找出點P的坐標(biāo),將其代入拋物線解析式中即可得出關(guān)于m的一元二次方程,解方程求出m值,再代入點P坐標(biāo)中即可得出結(jié)論.試題解析:(1)當(dāng)中y=0時,有,解得:=﹣3,=1,∵A在B的左側(cè),∴A(﹣3,0),B(1,0).當(dāng)中x=0時,則y=3,∴C(0,3).∵=,∴頂點D(﹣1,4).(2)作點C關(guān)于x軸對稱的點C′,連接C′D交x軸于點E,此時△CDE的周長最小,如圖1所示.∵C(0,3),∴C′(0,﹣3).設(shè)直線C′D的解析式為y=kx+b,則有:,解得:,∴直線C′D的解析式為y=﹣7x﹣3,當(dāng)y=﹣7x﹣3中y=0時,x=,∴當(dāng)△CDE的周長最小,點E的坐標(biāo)為(,0).(3)設(shè)直線AC的解析式為y=ax+c,則有:,解得:,∴直線AC的解析式為y=x+3.假設(shè)存在,設(shè)點F(m,m+3),△AFP為等腰直角三角形分三種情況(如圖2所示):①當(dāng)∠PAF=90176。時,P(m,﹣m﹣3),∵點P在拋物線上,∴,解得:m1=﹣3(舍去),m2=2,此時點P的坐標(biāo)為(2,﹣5);②當(dāng)∠AFP=90176。時,P(2m+3,0)∵點P在拋物線上,∴,解得:m3=﹣3(舍去),m4=﹣1,此時點P的坐標(biāo)為(1,0);③當(dāng)∠APF=90176。時,P(m,0),∵點P在拋物線上,∴,解得:m5=﹣3(舍去),m6=1,此時點P的坐標(biāo)為(1,0).綜上可知:在拋物線上存在點P,使得△AFP為等腰直角三角形,點P的坐標(biāo)為(2,﹣5)或(1,0).考點:二次函數(shù)綜合題;最值問題;存在型;分類討論;綜合題.14.如圖,已知A(﹣2,0),B(4,0),拋物線y=ax2+bx﹣1過A、B兩點,并與過A點的直線y=﹣x﹣1交于點C.(1)求拋物線解析式及對稱軸;(2)在拋物線的對稱軸上是否存在一點P,使四邊形ACPO的周長最???若存在,求出點P的坐標(biāo),若不存在,請說明理由;(3)點M為y軸右側(cè)拋物線上一點,過點M作直線AC的垂線,垂足為N.問:是否存在這樣的點N,使以點M、N、C為頂點的三角形與△AOC相似,若存在,求出點N的坐標(biāo),若不存在,請說明理由.【答案】(1)拋物線解析式為:y=,拋物線對稱軸為直線x=1;(2)存在P點坐標(biāo)為(1,﹣);(3)N點坐標(biāo)為(4,﹣3)或(2,﹣1)【解析】分析:(1)由待定系數(shù)法求解即可;(2)將四邊形周長最小轉(zhuǎn)化為PC+PO最小即可;(3)利用相似三角形對應(yīng)點進(jìn)行分類討論,構(gòu)造圖形.設(shè)出點N坐標(biāo),表示點M坐標(biāo)代入拋物線解析式即可.詳解:(1)把A(2,0),B(4,0)代入拋物線y=ax2+bx1,得 解得 ∴拋物線解析式為:y=x2?x?1∴拋物線對稱軸為直線x==1(2)存在使四邊形ACPO的周長最小,只需PC+PO最小∴取點C(0,1)關(guān)于直線x=1的對稱點C′(2,1),連C′O與直線x=1的交點即為P點.設(shè)過點C′、O直線解析式為:y=kx∴k=∴y=x則P點坐標(biāo)為(1,)(3)當(dāng)△AOC∽△MNC時,如圖,延長MN交y軸于點D,過點N作NE⊥y軸于點E∵∠ACO=∠NCD,∠AOC=∠CND=90176?!唷螩DN=∠CAO由相似,∠CAO=∠CMN∴∠CDN=∠CMN∵M(jìn)N⊥AC∴M、D關(guān)于AN對稱,則N為DM中點設(shè)點N坐標(biāo)為(a,a1)由△EDN∽△OAC∴ED=2a∴點D坐標(biāo)為(0,a?1)∵N為DM中點∴點M坐標(biāo)為(2a,a?1)把M代入y=x2?x?1,解得a=4則N點坐標(biāo)為(4,3)當(dāng)△AOC∽△CNM時,∠CAO=∠NCM∴CM∥AB則點C關(guān)于直線x=1的對稱點C′即為點N由(2)N(2,1)∴N點坐標(biāo)為(4,3)或(2,1)點睛:本題為代數(shù)幾何綜合題,考查了待定系數(shù)、兩點之間線段最短的數(shù)學(xué)模型構(gòu)造、三角形相似.解答時,應(yīng)用了數(shù)形結(jié)合和分類討論的數(shù)學(xué)思想.15.已知拋物線的圖象如圖所示:(1)將該拋物線向上平移2個單位,分別交x軸于A、B兩點,交y軸于點C,則平移后的解析式為 ?。?)判斷△ABC的形狀,并說明理由.(3)在拋物線對稱軸上是否存在一點P,使得以A、C、P為頂點的三角形是等腰三角形?若存在,求出點P的坐標(biāo);若不存在,說明理由.【答案】(1);(2)△ABC是直角三角形;(3)存在,、.【解析】【分析】(1)根據(jù)函數(shù)圖象的平移規(guī)律,可得新的函數(shù)解析式;(2)根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得A,B,C的坐標(biāo),根據(jù)勾股定理及逆定理,可得答案;(3)根據(jù)等腰三角形的定義,分三種情況,可得關(guān)于n的方程,根據(jù)解方程,可得答案.【詳解】(1)將該拋物線向上平移2個單位,得:yx2x+2.故答案為yx2x+2;(2)當(dāng)y=0時,x2x+2=0,解得:x1=﹣4,x2=1,即B(﹣4,0),A(1,0).當(dāng)x=0時,y=2,即C(0,2).AB=1﹣(﹣4)=5,AB2=25,AC2=(1﹣0)2+(0﹣2)2=5,BC2=(﹣4﹣0)2+(0﹣2)2=20.∵AC2+BC2=AB2,∴△ABC是直角三角形;(3)yx2x+2的對稱軸是x,設(shè)P(,n),AP2=(1)2+n2n2,CP2(2﹣n)2,AC2=12+22=:①當(dāng)AP=AC時,AP2=AC2,n2=5,方程無解;②當(dāng)AP=CP時,AP2=CP2,n2(2﹣n)2,解得:n=0,即P1(,0);③當(dāng)AC=CP時,AC2=CP2,(2﹣n)2=5,解得:n1=2,n2=2,P2(,2),P3(,2).綜上所述:在拋物線對稱軸上存在一點P,使得以A、C、P為頂點的三角形是等腰三角形,點P的坐標(biāo)(,0),(,2),(,2).【點睛】本題考查了二次函數(shù)綜合題.解(1)的關(guān)鍵是二次函數(shù)圖象的平移,解(2)的關(guān)鍵是利用勾股定理及逆定理;解(3)的關(guān)鍵是利用等腰三角形的定義得出關(guān)于n的方程,要分類討論,以防遺漏.
點擊復(fù)制文檔內(nèi)容
公司管理相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1