freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

高一數(shù)學(xué)集合的概念教學(xué)設(shè)計(jì)(編輯修改稿)

2024-11-15 07:02 本頁(yè)面
 

【文章內(nèi)容簡(jiǎn)介】 (c+d)=(a+c)+(b+d)∵a∈z, b∈z,c∈z, d∈z∴(a+c)∈z,(b+d)∈z∴x+y =(a+c)+(b+d)∈g,又∵ =且 不一定都是整數(shù),∴ = 不一定屬于集合g四、小結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容::(集合、元素、屬于、不屬于):確定性,互異性,無(wú)序性五、課后作業(yè):六、板書設(shè)計(jì)(略)七、課后記:第二篇:高一數(shù)學(xué)集合的概念教學(xué)設(shè)計(jì)高一數(shù)學(xué)集合的概念教學(xué)設(shè)計(jì)本資料為woRD文檔,請(qǐng)點(diǎn)擊下載地址下載全文下載地址課題:-集合的概念教學(xué)目的:(1)使學(xué)生初步理解集合的概念,知道常用數(shù)集的概念及記法(2)使學(xué)生初步了解“屬于”關(guān)系的意義(3)使學(xué)生初步了解有限集、無(wú)限集、空集的意義教學(xué)重點(diǎn):集合的基本概念及表示方法教學(xué)難點(diǎn):運(yùn)用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡(jiǎn)單的集合授課類型:新授課課時(shí)安排:1課時(shí)教具:多媒體、實(shí)物投影儀內(nèi)容分析:.集合是中學(xué)數(shù)學(xué)的一個(gè)重要的基本概念在小學(xué)數(shù)學(xué)中,就滲透了集合的初步概念,到了初中,更進(jìn)一步應(yīng)用集合的語(yǔ)言表述一些問(wèn)題例如,在代數(shù)中用到的有數(shù)集、解集等;在幾何中用到的有點(diǎn)集至于邏輯,可以說(shuō),從開始學(xué)習(xí)數(shù)學(xué)就離不開對(duì)邏輯知識(shí)的掌握和運(yùn)用,基本的邏輯知識(shí)在日常生活、學(xué)習(xí)、工作中,也是認(rèn)識(shí)問(wèn)題、研究問(wèn)題不可缺少的工具這些可以幫助學(xué)生認(rèn)識(shí)學(xué)習(xí)本章的意義,也是本章學(xué)習(xí)的基礎(chǔ)把集合的初步知識(shí)與簡(jiǎn)易邏輯知識(shí)安排在高中數(shù)學(xué)的最開始,是因?yàn)樵诟咧袛?shù)學(xué)中,這些知識(shí)與其他內(nèi)容有著密切聯(lián)系,它們是學(xué)習(xí)、掌握和使用數(shù)學(xué)語(yǔ)言的基礎(chǔ)例如,下一章講函數(shù)的概念與性質(zhì),就離不開集合與邏輯本節(jié)首先從初中代數(shù)與幾何涉及的集合實(shí)例入手,引出集合與集合的元素的概念,并且結(jié)合實(shí)例對(duì)集合的概念作了說(shuō)明然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子這節(jié)課主要學(xué)習(xí)全章的引言和集合的基本概念學(xué)習(xí)引言是引發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生認(rèn)識(shí)學(xué)習(xí)本章的意義本節(jié)課的教學(xué)重點(diǎn)是集合的基本概念集合是集合論中的原始的、不定義的概念在開始接觸集合的概念時(shí),主要還是通過(guò)實(shí)例,對(duì)概念有一個(gè)初步認(rèn)識(shí)教科書給出的“一般地,某些指定的對(duì)象集在一起就成為一個(gè)集合,也簡(jiǎn)稱集”這句話,只是對(duì)集合概念的描述性說(shuō)明教學(xué)過(guò)程:一、復(fù)習(xí)引入:1.簡(jiǎn)介數(shù)集的發(fā)展,復(fù)習(xí)最大公約數(shù)和最小公倍數(shù),質(zhì)數(shù)與和數(shù);2.教材中的章頭引言;3.集合論的創(chuàng)始人——康托爾(德國(guó)數(shù)學(xué)家)(見附錄);4.“物以類聚”,“人以群分”;5.教材中例子(P4)二、講解新課:閱讀教材第一部分,問(wèn)題如下:(1)有那些概念?是如何定義的?(2)有那些符號(hào)?是如何表示的?(3)集合中元素的特性是什么?(一)集合的有關(guān)概念:由一些數(shù)、一些點(diǎn)、一些圖形、一些整式、一些物體、每一組對(duì)象的全體形成一個(gè)集合,或者說(shuō),某些指定的對(duì)象集在一起就成為一個(gè)集合,:一般地,某些指定的對(duì)象集在一起就成為一個(gè)集合.集合的概念(1)集合:某些指定的對(duì)象集在一起就形成一個(gè)集合(簡(jiǎn)稱集)(2)元素:集合中每個(gè)對(duì)象叫做這個(gè)集合的元素常用數(shù)集及記法(1)非負(fù)整數(shù)集(自然數(shù)集):全體非負(fù)整數(shù)的集合記作N,(2)正整數(shù)集:非負(fù)整數(shù)集內(nèi)排除0的集記作N*或N+(3)整數(shù)集:全體整數(shù)的集合記作Z,(4)有理數(shù)集:全體有理數(shù)的集合記作Q,(5)實(shí)數(shù)集:全體實(shí)數(shù)的集合記作R注:(1)自然數(shù)集與非負(fù)整數(shù)集是相同的,也就是說(shuō),自然數(shù)集包括數(shù)0(2)非負(fù)整數(shù)集內(nèi)排除0的集記作N*或N+Q、Z、R等其它數(shù)集內(nèi)排除0的集,也是這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z*元素對(duì)于集合的隸屬關(guān)系(1)屬于:如果a是集合A的元素,就說(shuō)a屬于A,記作a∈A(2)不屬于:如果a不是集合A的元素,就說(shuō)a不屬于A,記作集合中元素的特性(1)確定性:按照明確的判斷標(biāo)準(zhǔn)給定一個(gè)元素或者在這個(gè)集合里,或者不在,不能模棱兩可(2)互異性:集合中的元素沒(méi)有重復(fù)(3)無(wú)序性:集合中的元素沒(méi)有一定的順序(通常用正常的順序?qū)懗觯偶贤ǔS么髮懙睦∽帜副硎荆鏏、B、c、P、Q……元素通常用小寫的拉丁字母表示,如a、b、c、p、q……⑵“∈”的開口方向,不能把a(bǔ)∈A顛倒過(guò)來(lái)寫三、練習(xí)題:教材P5練習(xí)2下列各組對(duì)象能確定一個(gè)集合嗎?(1)所有很大的實(shí)數(shù)(不確定)(2)好心的人(不確定)(3)1,2,2,3,4,5.(有重復(fù))設(shè)a,b是非零實(shí)數(shù),那么可能取的值組成集合的元素是_2,0,2__由實(shí)數(shù)x,-x,|x|,所組成的集合,最多含(A)(A)2個(gè)元素(B)3個(gè)元素(c)4個(gè)元素(D)5個(gè)元素設(shè)集合G中的元素是所有形如a+b(a∈Z,b∈Z)的數(shù),求證:當(dāng)x∈N時(shí),x∈G。若x∈G,y∈G,則x+y∈G,而不一定屬于集合G證明:在a+b(a∈Z,b∈Z)中,令a=x∈N,b=0,則x=x+0*=a+b∈G,即x∈G證明:∵x∈G,y∈G,∴x=a+b(a∈Z,b∈Z),y=c+d(c∈Z,d∈Z)∴x+y=+=+∵a∈Z,b∈Z,c∈Z,d∈Z∴∈Z,∈Z∴x+y=+∈G,又∵=且不一定都是整數(shù),∴=不一定屬于集合G四、小結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:1.集合的有關(guān)概念:(集合、元素、屬于、不屬于)2.集合元素的性質(zhì):確定性,互異性,無(wú)序性3.常用數(shù)集的定義及記法五、課后作業(yè):六、板書設(shè)計(jì)(略)七、課后記:八、附錄:康托爾簡(jiǎn)介發(fā)瘋了的數(shù)學(xué)家康托爾(Georgcantor,1845-1918)是德國(guó)數(shù)學(xué)家,集合論的創(chuàng)始者1845年3月3日生于圣彼得堡,1918年1月6日病逝于哈雷康托爾11歲時(shí)移居德國(guó),在德國(guó)讀中學(xué)1862年17歲時(shí)入瑞士蘇黎世大學(xué),翌年入柏林大學(xué),主修數(shù)學(xué),1866年曾去格丁根學(xué)習(xí)一學(xué)期1867年以數(shù)論方面的論文獲博士學(xué)位1869年在哈雷大學(xué)通過(guò)講師資格考試,后在該大學(xué)任講師,1872年任副教授,1879年任教授由于研究無(wú)窮時(shí)往往推出一些合乎邏輯的但又荒謬的結(jié)果,許多大數(shù)學(xué)家唯恐陷進(jìn)去而采取退避三舍的態(tài)度在1874—1876年期間,不到30歲的年輕德國(guó)數(shù)學(xué)家康托爾向神秘的無(wú)窮宣戰(zhàn)他靠著辛勤的汗水,成功地證明了一條直線上的點(diǎn)能夠和一個(gè)平面上的點(diǎn)一一對(duì)應(yīng),也能和空間中的點(diǎn)一一對(duì)應(yīng)這樣看起來(lái),1厘米長(zhǎng)的線段內(nèi)的點(diǎn)與太平洋面上的點(diǎn),以及整個(gè)地球內(nèi)部的點(diǎn)都“一樣多”,后來(lái)幾年,康托爾對(duì)這類“無(wú)窮集合”問(wèn)題發(fā)表了一系列,通過(guò)嚴(yán)格證明得出了許多驚人的結(jié)論康托爾的創(chuàng)造性工作與傳統(tǒng)的數(shù)學(xué)觀念發(fā)生了尖銳沖突,遭到一些人的反對(duì)、攻擊甚至謾罵有人說(shuō),康托爾的集合論是一種“疾病”,康托爾的概念是“霧中之霧”,甚至說(shuō)康托爾是“瘋子”來(lái)自數(shù)學(xué)權(quán)威們的巨大精神壓力終于摧垮了康托爾,使他心力交瘁,患了精神分裂癥,被送進(jìn)精神病醫(yī)院真金不怕火煉,康托爾的思想終于大放光彩1897年舉行的第一次國(guó)際數(shù)學(xué)家會(huì)議上,他的成就得到承認(rèn),偉大的哲學(xué)家、數(shù)學(xué)家羅素稱贊康托爾的工作“可能是這個(gè)時(shí)代所能夸耀的最巨大
點(diǎn)擊復(fù)制文檔內(nèi)容
物理相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1