【總結(jié)】第一篇:用放縮法證明不等f式 用放縮法證明不等式 不等式是高考數(shù)學(xué)中的難點,而用放縮法證明不等式學(xué)生更加難以掌握。不等式是衡量學(xué)生數(shù)學(xué)素質(zhì)的有效工具,在高考試題中不等式的考查是熱點難點。本難點著重...
2024-10-28 07:59
【總結(jié)】第一篇:怎樣用換元法證明不等式 怎樣用換元法證明不等式 陸世永 我們知道,無論在中學(xué),還是在大學(xué),不等式的證明都是一個難點。人們在證明不等式時創(chuàng)造了許多方法,其中有換元法。下面我們探索怎樣用換元...
2024-10-28 03:59
【總結(jié)】第一篇:3、2、1用向量法證明直線與直線平行、直線與平面平行、平面與平面平行(共) 高二數(shù)學(xué)B3、2、1用向量法證明直線與直線平行、直線與平面平行、平面與平面平行 編號:9編制:戴金娜審核:劉紅英...
2024-10-27 08:02
【總結(jié)】研究從今天開始,我們將進一步來體會向量這一工具在立體幾何中的應(yīng)用.為了用向量來研究空間的線面位置關(guān)系,首先我們要用向量來表示直線和平面的“方向”。那么如何用向量來刻畫直線和平面的“方向”呢?一、直線的方向向量AB直線l上的向量以及與共線的向量叫做直線l的方向向量。由于垂直于同一平面的直線是互相平行的,所
2025-04-30 18:16
【總結(jié)】第一篇:用放縮法證明數(shù)列求和中的不等式 用放縮法證明數(shù)列求和中的不等式 近幾年,高考試題常把數(shù)列與不等式的綜合題作為壓軸題,而壓軸題的最后一問又重點考查用放縮法證明不等式,這類試題技巧性強,難度大...
2024-10-28 05:08
【總結(jié)】第一篇:淺談用放縮法證明不等式 淺談用放縮法證明不等式 山東省許曄 不等式的證明是中學(xué)數(shù)學(xué)教學(xué)的重點,也是學(xué)生接受時感到頭痛的難點。不等式的證明方法很多。如:比較法(比差商法)、分析法、綜合法、...
2024-10-28 04:08
【總結(jié)】第二講:立體幾何中的向量方法——利用空間向量求直線與平面所成的角大家知道,立體幾何是高中數(shù)學(xué)學(xué)習的一個難點,以往學(xué)生學(xué)習立體幾何時,主要采取“形到形”的綜合推理方法,即根據(jù)題設(shè)條件,將空間圖形轉(zhuǎn)化為平面圖形,再由線線,線面等關(guān)系確定結(jié)果,這種方法沒有一般規(guī)律可循,對人的智力形成極大的挑戰(zhàn),技巧性較強,致使大多數(shù)學(xué)生都感到束手無策。高中新教材中,
2025-04-17 07:24
【總結(jié)】第一篇:淺談用放縮法證明不等式的方法與技巧 淺談用放縮法證明不等式的方法與技巧 分類:學(xué)法指導(dǎo) 放縮法:為放寬或縮小不等式的范圍的方法。常用在多項式中“舍掉一些正(負)項”而使不等式各項之和變小...
2024-10-28 06:44
【總結(jié)】第一篇:用放縮法證明與數(shù)列和有關(guān)的不等式 用放縮法證明與數(shù)列和有關(guān)的不等式 湖北省天門中學(xué)薛德斌 數(shù)列與不等式的綜合問題常常出現(xiàn)在高考的壓軸題中,是歷年高考命題的熱點,這類問題能有效地考查學(xué)生綜...
2024-10-27 22:27
【總結(jié)】......平面法向量的求法及其應(yīng)用一、平面的法向量1、定義:如果,那么向量叫做平面的法向量。平面的法向量共有兩大類(從方向上分),無數(shù)條。2、平面法向量的求法方法一(內(nèi)積法):在給定的空間直角坐標系中,設(shè)平
2025-06-23 08:32
【總結(jié)】成才之路·數(shù)學(xué)路漫漫其修遠兮吾將上下而求索人教A版·選修2-1空間向量與立體幾何第三章立體幾何中的向量方法第1課時直線的方向向量和平面的法向量第三章典例探究學(xué)案2鞏固提高學(xué)案3自主預(yù)習學(xué)案1自主預(yù)習學(xué)案?1.理解直線的方向向量,平面的法向量.
2024-11-09 05:44
【總結(jié)】1直線的方向向量與平面的法向量2平面向量空間向量推廣到立體幾何問題(研究的基本對象是點、直線、平面以及由它們組成的空間圖形)向量漸漸成為重要工具從今天開始,我們將進一步來體會向量這一工具在立體幾何中的應(yīng)用.前面,我們把3為了用向量的方法研究空間的線面位置
2024-10-16 19:32
【總結(jié)】平面向量的坐標運算a-b),(2211baba???),(2211baba???a+b12(,)aaa????1212xxabyy???????一一對應(yīng)一一對應(yīng)點AOA向量(,)xy坐標1122+eeaaa?12(,)aaa?1
2025-07-20 05:00
【總結(jié)】精品資源巧用向量證明不等式對不等式的證明,若認真分析某些不等式的條件和結(jié)論,構(gòu)造適當?shù)南蛄?,利用向量?shù)量積的性質(zhì),可使證明過程變得簡捷,下面舉例加以說明。例1.已知。證明:設(shè)由(為的夾角)得,即有故例2.已知。證明:設(shè),由和,得,故。例3.求證:。證明:設(shè)
2025-06-24 20:59
【總結(jié)】精品資源難點3運用向量法解題平面向量是新教材改革增加的內(nèi)容之一,近幾年的全國使用新教材的高考試題逐漸加大了對這部分內(nèi)容的考查力度,本節(jié)內(nèi)容主要是幫助考生運用向量法來分析,解決一些相關(guān)問題.●難點磁場(★★★★★)三角形ABC中,A(5,-1)、B(-1,7)、C(1,2),求:(1)BC邊上的中線AM的長;(2)∠CAB的平分線AD的長;(3)cosABC的值.●
2025-03-26 05:12