【總結】空間向量的數(shù)量積(二)【學習目標】利用空間向量的數(shù)量積解決立體幾何中的一些簡單問題?!咀灾鲗W習與檢測】在正方體1111ABCDABCD?中,點M是AB的中點,(1)求證;1ACDB?三、求1DB與CM所成角的余弦值。完成此題后,請你比較傳統(tǒng)證法與向量證法的優(yōu)劣。
2024-12-05 01:52
【總結】空間向量的數(shù)量積(一)【學習目標】;;?!咀灾鲗W習】:::補充定義:零向量與任何向量的數(shù)量積為______________.:①___________________②__________________③___________________【自主檢測】
【總結】(一)【學習目標】1.熟練掌握橢圓的范圍,對稱性,頂點等簡單幾何性質(zhì)奎屯王新敞新疆2.掌握標準方程中cba,,的幾何意義,以及ecba,,,的相互關系奎屯王新敞新疆3.理解、掌握坐標法中根據(jù)曲線的方程研究曲線的幾何性質(zhì)的一般方法奎屯王新敞新疆【自主學習】yx,2.的點?橢圓的長軸與短軸是怎樣
2024-12-05 06:41
【總結】aBAOlP空間向量的數(shù)乘運算【學習目標】理解空間向量共線、共面的充要條件【自主學習】1.共線向量與平面向量類似,如果表示空間向量的有向線段所在的直線互相平行或重合,則這些向量叫做共線向量或平行向量,記作ba??//.當向量a?、b?共線(或a?//b?)時,表示a?、b
2024-12-05 06:40
【總結】圓錐曲線的方程與性質(zhì)【使用說明及學法指導】1.先自學課本,理解概念,完成導學提綱;2.小組合作,動手實踐。【學習目標】1.掌握橢圓、雙曲線、拋物線的定義及標準方程;2.掌握橢圓、雙曲線、拋物線的幾何性質(zhì);【重點】橢圓、雙曲線、拋物線的定義、標準方程及幾何性質(zhì)【難點】橢圓、雙曲線、拋物線的定義、標準方程及幾何性質(zhì)一、
2024-11-19 06:26
【總結】§雙曲線的簡單幾何性質(zhì)(1)【使用說明及學法指導】1.先自學課本,理解概念,完成導學提綱;2.小組合作,動手實踐?!緦W習目標】1.理解并掌握雙曲線的幾何性質(zhì)【重點】雙曲線的幾何性質(zhì)【難點】雙曲線的幾何性質(zhì)一、自主學習56-58頁,完成下列問題1.雙曲線位于四條直線___________
2024-11-18 16:52
【總結】§雙曲線的簡單幾何性質(zhì)(2)【使用說明及學法指導】1.先自學課本,理解概念,完成導學提綱;2.小組合作,動手實踐。【學習目標】1.根據(jù)雙曲線的方程研究雙曲線的幾何性質(zhì);2.雙曲線與直線的關系.【重點】理解雙曲線的方程幾何性質(zhì)和直線的位置關系【難點】直線和雙曲線的位置關系一、自主學習P5
2024-11-28 00:10
【總結】《曲線與方程》教學目標?理解并能運用曲線的方程、方程的曲線的概念,建立“數(shù)”與“形”的橋梁,培養(yǎng)學生數(shù)形結合的意識.?教學重點:求曲線的方程?教學難點:掌握用直接法、代入法、交軌法等求曲線方程的方法(1)、求第一、三象限里兩軸間夾角平分線的坐標滿足的關系第一、三象限角平分線??點的橫坐標與縱坐標相等
2024-11-18 12:14
【總結】求曲線的方程1教學目標知識與技能根據(jù)已知條件求平面曲線方程的基本步驟.過程與方法情感態(tài)度與價值觀教學重難點求曲線方程的步驟教學流程\內(nèi)容\板書關鍵點撥加工潤色一、課題導
2024-11-20 00:30
【總結】求曲線的方程2教學目標知識與技能1.更進一步熟練運用求曲線方程的方法、步驟,能熟練地根據(jù)條件求出簡單的曲線方程.過程與方法情感態(tài)度與價值觀教學重難點求曲線的方程或軌跡的常用方法:直接法、定義
【總結】§拋物線及其標準方程【使用說明及學法指導】1.先自學課本,理解概念,完成導學提綱;2.小組合作,動手實踐。【學習目標】1.掌握拋物線的定義、標準方程、幾何圖形【重點】掌握拋物線的定義、標準方程【難點】掌握拋物線的定義、標準方程、幾何圖形一、自主學習函數(shù)2261yxx???
【總結】軌跡方程的求法【使用說明及學法指導】1.先自學課本,理解概念,完成導學提綱;2.小組合作,動手實踐。【學習目標】1.掌握常見的曲線軌跡方程的求法;【重點】常見的曲線軌跡方程的求法【難點】常見的曲線軌跡方程的求法一、復習回顧:方法適用范圍關鍵待定系數(shù)法直接法
2024-11-18 23:03
【總結】求曲線的方程oyxoyx復習.答:一般地,在直角坐標系中,如果某曲線C上的點與一個二元方程F(x,y)=0的實數(shù)解建立了如下的關系:(1)曲線C上的點的坐標都是方程F(x,y)=0的解,(2)以方程F(x,y)=0的解為坐標的點都是曲線C上的點
2024-11-18 01:22
【總結】拋物線的簡單幾何性質(zhì)【學習目標】掌握拋物線的范圍、對稱性、頂點、離心率等幾何性質(zhì).【自主學習】根據(jù)拋物線的標準方程)0(22??ppxy,研究它的幾何性質(zhì):1.范圍2.對稱性3.頂點4.離心率拋物線上的點M與焦點的距離和它到準線的距離的比,叫做拋物線的離心率,用e表示.由拋物線的定義可知,
【總結】l:x+y-3=0及曲線C:(x-3)2+(y-2)2=2,則點M(2,1)()A.在直線l上,但不在曲線C上B.在直線l上,也在曲線C上C.不在直線l上,也不在曲線C上D.不在直線l上,但在曲線C上解析:選x=2,y=1代入直線l:x+y-3